Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(6-2): 065307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020909

RESUMO

We present a data-driven reduced-order modeling of the space-charge dynamics for electromagnetic particle-in-cell (EMPIC) plasma simulations based on dynamic mode decomposition (DMD). The dynamics of the charged particles in kinetic plasma simulations such as EMPIC is manifested through the plasma current density defined along the edges of the spatial mesh. We showcase the efficacy of DMD in modeling the time evolution of current density through a low-dimensional feature space. Not only do such DMD-based predictive reduced-order models help accelerate EMPIC simulations, they also have the potential to facilitate investigative analysis and control applications. We demonstrate the proposed DMD-EMPIC scheme for reduced-order modeling of current density and speedup in EMPIC simulations involving electron beam under the influence of magnetic field, virtual cathode oscillations, and backward wave oscillator.

2.
Geophys Res Lett ; 48(11): e2021GL093029, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34219833

RESUMO

Based on global hybrid simulation results, we predict that foreshock turbulence can reach the magnetopause and lead to reconnection as well as Earth-sized indents. Both the interplanetary magnetic field (IMF) and solar wind are constant in our simulation, and hence, all dynamics are generated by foreshock instabilities. The IMF in the simulation is mostly Sun-Earth aligned with a weak northward and zero dawn-dusk component, such that subsolar magnetopause reconnection is not expected without foreshock turbulence modifying the magnetosheath fields. We show a reconnection example to illustrate that the turbulence can create large magnetic shear angles across the magnetopause to induce local bursty reconnection. Magnetopause reconnection and indents developed from the impact of foreshock turbulence can potentially contribute to dayside loss of planetary plasmas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...