Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 19(1): 36, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266629

RESUMO

BACKGROUND: The identification of differentially expressed tumor-associated proteins and genomic alterations driving neoplasia is critical in the development of clinical assays to detect cancers and forms the foundation for understanding cancer biology. One of the challenges in the analysis of pancreatic ductal adenocarcinoma (PDAC) is the low neoplastic cellularity and heterogeneous composition of bulk tumors. To enrich neoplastic cells from bulk tumor tissue, coring, and laser microdissection (LMD) sampling techniques have been employed. In this study, we assessed the protein and KRAS mutation changes associated with samples obtained by these enrichment techniques and evaluated the fraction of neoplastic cells in PDAC for proteomic and genomic analyses. METHODS: Three fresh frozen PDAC tumors and their tumor-matched normal adjacent tissues (NATs) were obtained from three sampling techniques using bulk, coring, and LMD; and analyzed by TMT-based quantitative proteomics. The protein profiles and characterizations of differentially expressed proteins in three sampling groups were determined. These three PDACs and samples of five additional PDACs obtained by the same three sampling techniques were also subjected to genomic analysis to characterize KRAS mutations. RESULTS: The neoplastic cellularity of eight PDACs ranged from less than 10% to over 80% based on morphological review. Distinctive proteomic patterns and abundances of certain tumor-associated proteins were revealed when comparing the tumors and NATs by different sampling techniques. Coring and bulk tissues had comparable proteome profiles, while LMD samples had the most distinct proteome composition compared to bulk tissues. Further genomic analysis of bulk, cored, or LMD samples demonstrated that KRAS mutations were significantly enriched in LMD samples while coring was less effective in enriching for KRAS mutations when bulk tissues contained a relatively low neoplastic cellularity. CONCLUSIONS: In addition to bulk tissues, samples from LMD and coring techniques can be used for proteogenomic studies. The greatest enrichment of neoplastic cellularity is obtained with the LMD technique.

2.
Proteomics ; 12(3): 346-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22290801

RESUMO

iMOP--the Initiative on Model Organism Proteomes--was accepted as a new HUPO initiative at the Ninth HUPO meeting in Sydney in 2010. A goal of iMOP is to integrate research groups working on a great diversity of species into a model organism community. At the Tenth HUPO meeting in Geneva this variety was reflected in the iMOP session on Tuesday September 6, 2011. The presentations covered the quantitative proteome database PaxDb, proteomics projects studying farm animals, Arabidopsis thaliana, as well as host-pathogen interactions.


Assuntos
Bases de Dados como Assunto , Interações Hospedeiro-Patógeno , Proteoma , Animais , Animais Domésticos , Arabidopsis/química , Suíça
5.
BMC Genomics ; 11 Suppl 4: S7, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21143816

RESUMO

BACKGROUND: While the accuracy and precision of deep sequencing data is significantly better than those obtained by the earlier generation of hybridization-based high throughput technologies, the digital nature of deep sequencing output often leads to unwarranted confidence in their reliability. RESULTS: The NGSQC (Next Generation Sequencing Quality Control) pipeline provides a set of novel quality control measures for quickly detecting a wide variety of quality issues in deep sequencing data derived from two dimensional surfaces, regardless of the assay technology used. It also enables researchers to determine whether sequencing data related to their most interesting biological discoveries are caused by sequencing quality issues. CONCLUSIONS: Next generation sequencing platforms have their own share of quality issues and there can be significant lab-to-lab, batch-to-batch and even within chip/slide variations. NGSQC can help to ensure that biological conclusions, in particular those based on relatively rare sequence alterations, are not caused by low quality sequencing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Controle de Qualidade , Análise de Sequência de DNA/métodos , Sequência de Bases , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...