Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798676

RESUMO

In patients with dyssynchronous heart failure (DHF), cardiac conduction abnormalities cause the regional distribution of myocardial work to be non-homogeneous. Cardiac resynchronization therapy (CRT) using an implantable, programmed biventricular pacemaker/defibrillator, can improve the synchrony of contraction between the right and left ventricles in DHF, resulting in reduced morbidity and mortality and increased quality of life. Since regional work depends on wall stress, which cannot be measured in patients, we used computational methods to investigate regional work distributions and their changes after CRT. We used three-dimensional multi-scale patient-specific computational models parameterized by anatomic, functional, hemodynamic, and electrophysiological measurements in eight patients with heart failure and left bundle branch block (LBBB) who received CRT. To increase clinical translatability, we also explored whether streamlined computational methods provide accurate estimates of regional myocardial work. We found that CRT increased global myocardial work efficiency with significant improvements in non-responders. Reverse ventricular remodeling after CRT was greatest in patients with the highest heterogeneity of regional work at baseline, however the efficacy of CRT was not related to the decrease in overall work heterogeneity or to the reduction in late-activated regions of high myocardial work. Rather, decreases in early-activated regions of myocardium performing negative myocardial work following CRT best explained patient variations in reverse remodeling. These findings were also observed when regional myocardial work was estimated using ventricular pressure as a surrogate for myocardial stress and changes in endocardial surface area as a surrogate for strain. These new findings suggest that CRT promotes reverse ventricular remodeling in human dyssynchronous heart failure by increasing regional myocardial work in early-activated regions of the ventricles, where dyssynchrony is specifically associated with hypoperfusion, late systolic stretch, and altered metabolic activity and that measurement of these changes can be performed using streamlined approaches.

2.
Med Image Anal ; 93: 103091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301348

RESUMO

Universal coordinate systems have been proposed to facilitate anatomic registration between three-dimensional images, data and models of the ventricles of the heart. However, current universal ventricular coordinate systems do not account for the outflow tracts and valve annuli where the anatomy is complex. Here we propose an extension to the 'Cobiveco' biventricular coordinate system that also accounts for the intervalvular bridges of the base and provides a tool for anatomically consistent registration between widely varying biventricular shapes. CobivecoX uses a novel algorithm to separate intervalvular bridges and assign new coordinates, including an inflow-outflow coordinate, to describe local positions in these regions uniquely and consistently. Anatomic consistency of registration was validated using curated three-dimensional biventricular shape models derived from cardiac MRI measurements in normal hearts and hearts from patients with congenital heart diseases. This new method allows the advantages of universal cardiac coordinates to be used for three-dimensional ventricular imaging data and models that include the left and right ventricular outflow tracts and valve annuli.


Assuntos
Catéteres , Cardiopatias Congênitas , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Coração , Ventrículos do Coração/diagnóstico por imagem , Algoritmos
3.
Am J Physiol Heart Circ Physiol ; 326(2): H370-H384, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063811

RESUMO

To identify how cardiomyocyte mechanosensitive signaling pathways are regulated by anisotropic stretch, micropatterned mouse neonatal cardiomyocytes were stretched primarily longitudinally or transversely to the myofiber axis. Four hours of static, longitudinal stretch induced differential expression of 557 genes, compared with 30 induced by transverse stretch, measured using RNA-seq. A logic-based ordinary differential equation model of the cardiac myocyte mechanosignaling network, extended to include the transcriptional regulation and expression of 784 genes, correctly predicted measured expression changes due to anisotropic stretch with 69% accuracy. The model also predicted published transcriptional responses to mechanical load in vitro or in vivo with 63-91% accuracy. The observed differences between transverse and longitudinal stretch responses were not explained by differential activation of specific pathways but rather by an approximately twofold greater sensitivity to longitudinal stretch than transverse stretch. In vitro experiments confirmed model predictions that stretch-induced gene expression is more sensitive to angiotensin II and endothelin-1, via RhoA and MAP kinases, than to the three membrane ion channels upstream of calcium signaling in the network. Quantitative cardiomyocyte gene expression differs substantially with the axis of maximum principal stretch relative to the myofilament axis, but this difference is due primarily to differences in stretch sensitivity rather than to selective activation of mechanosignaling pathways.NEW & NOTEWORTHY Anisotropic stretch applied to micropatterned neonatal mouse ventricular myocytes induced markedly greater acute transcriptional responses when the major axis of stretch was parallel to the myofilament axis than when it was transverse. Analysis with a novel quantitative network model of mechanoregulated cardiomyocyte gene expression suggests that this difference is explained by higher cell sensitivity to longitudinal loading than transverse loading than by the activation of differential signaling pathways.


Assuntos
Miócitos Cardíacos , Transdução de Sinais , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Angiotensina II/farmacologia , Regulação da Expressão Gênica , Células Cultivadas , Estresse Mecânico
4.
J Cardiovasc Magn Reson ; 25(1): 15, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849960

RESUMO

BACKGROUND: Cardiac shape modeling is a useful computational tool that has provided quantitative insights into the mechanisms underlying dysfunction in heart disease. The manual input and time required to make cardiac shape models, however, limits their clinical utility. Here we present an end-to-end pipeline that uses deep learning for automated view classification, slice selection, phase selection, anatomical landmark localization, and myocardial image segmentation for the automated generation of three-dimensional, biventricular shape models. With this approach, we aim to make cardiac shape modeling a more robust and broadly applicable tool that has processing times consistent with clinical workflows. METHODS: Cardiovascular magnetic resonance (CMR) images from a cohort of 123 patients with repaired tetralogy of Fallot (rTOF) from two internal sites were used to train and validate each step in the automated pipeline. The complete automated pipeline was tested using CMR images from a cohort of 12 rTOF patients from an internal site and 18 rTOF patients from an external site. Manually and automatically generated shape models from the test set were compared using Euclidean projection distances, global ventricular measurements, and atlas-based shape mode scores. RESULTS: The mean absolute error (MAE) between manually and automatically generated shape models in the test set was similar to the voxel resolution of the original CMR images for end-diastolic models (MAE = 1.9 ± 0.5 mm) and end-systolic models (MAE = 2.1 ± 0.7 mm). Global ventricular measurements computed from automated models were in good agreement with those computed from manual models. The average mean absolute difference in shape mode Z-score between manually and automatically generated models was 0.5 standard deviations for the first 20 modes of a reference statistical shape atlas. CONCLUSIONS: Using deep learning, accurate three-dimensional, biventricular shape models can be reliably created. This fully automated end-to-end approach dramatically reduces the manual input required to create shape models, thereby enabling the rapid analysis of large-scale datasets and the potential to deploy statistical atlas-based analyses in point-of-care clinical settings. Training data and networks are available from cardiacatlas.org.


Assuntos
Aprendizado Profundo , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Valor Preditivo dos Testes , Ventrículos do Coração , Diástole
5.
Sci Rep ; 13(1): 2335, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759522

RESUMO

Current indications for pulmonary valve replacement (PVR) in repaired tetralogy of Fallot (rTOF) rely on cardiovascular magnetic resonance (CMR) image-based indices but are inconsistently applied, lead to mixed outcomes, and remain debated. This study aimed to test the hypothesis that specific markers of biventricular shape may discriminate differences between rTOF patients who did and did not require subsequent PVR better than standard imaging indices. In this cross-sectional retrospective study, biventricular shape models were customized to CMR images from 84 rTOF patients. A statistical atlas of end-diastolic shape was constructed using principal component analysis. Multivariate regression was used to quantify shape mode and imaging index associations with subsequent intervention status (PVR, n = 48 vs. No-PVR, n = 36), while accounting for confounders. Clustering analysis was used to test the ability of the most significant shape modes and imaging indices to discriminate PVR status as evaluated by a Matthews correlation coefficient (MCC). Geometric strain analysis was also conducted to assess shape mode associations with systolic function. PVR status correlated significantly with shape modes associated with right ventricular (RV) apical dilation and left ventricular (LV) dilation (p < 0.01), RV basal bulging and LV conicity (p < 0.05), and pulmonary valve dilation (p < 0.01). PVR status also correlated significantly with RV ejection fraction (p < 0.05) and correlated marginally with LV end-systolic volume index (p < 0.07). Shape modes discriminated subsequent PVR better than standard imaging indices (MCC = 0.49 and MCC = 0.28, respectively) and were significantly associated with RV and LV radial systolic strain. Biventricular shape modes discriminated differences between patients who did and did not require subsequent PVR better than standard imaging indices in current use. These regional features of cardiac morphology may provide insight into adaptive vs. maladaptive types of structural remodeling and point toward an improved quantitative, patient-specific assessment tool for clinical use.


Assuntos
Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Pulmonar , Valva Pulmonar , Tetralogia de Fallot , Humanos , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/cirurgia , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Tetralogia de Fallot/complicações , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/cirurgia , Estudos Retrospectivos , Estudos Transversais , Imageamento por Ressonância Magnética , Resultado do Tratamento
6.
J Mol Cell Cardiol ; 174: 1-14, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370475

RESUMO

Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Animais , Camundongos , Conectina/genética , Conectina/metabolismo , Miócitos Cardíacos/metabolismo , Cardiomiopatia Hipertrófica/genética , Cálcio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cardiomiopatias/metabolismo , Insuficiência Cardíaca/metabolismo
7.
J Cardiovasc Magn Reson ; 24(1): 46, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922806

RESUMO

BACKGROUND: Maladaptive remodelling mechanisms occur in patients with repaired tetralogy of Fallot (rToF) resulting in a cycle of metabolic and structural changes. Biventricular shape analysis may indicate mechanisms associated with adverse events independent of pulmonary regurgitant volume index (PRVI). We aimed to determine novel remodelling patterns associated with adverse events in patients with rToF using shape and function analysis. METHODS: Biventricular shape and function were studied in 192 patients with rToF (median time from TOF repair to baseline evaluation 13.5 years). Linear discriminant analysis (LDA) and principal component analysis (PCA) were used to identify shape differences between patients with and without adverse events. Adverse events included death, arrhythmias, and cardiac arrest with median follow-up of 10 years. RESULTS: LDA and PCA showed that shape characteristics pertaining to adverse events included a more circular left ventricle (LV) (decreased eccentricity), dilated (increased sphericity) LV base, increased right ventricular (RV) apical sphericity, and decreased RV basal sphericity. Multivariate LDA showed that the optimal discriminative model included only RV apical ejection fraction and one PCA mode associated with a more circular and dilated LV base (AUC = 0.77). PRVI did not add value, and shape changes associated with increased PRVI were not predictive of adverse outcomes. CONCLUSION: Pathological remodelling patterns in patients with rToF are significantly associated with adverse events, independent of PRVI. Mechanisms related to incident events include LV basal dilation with a reduced RV apical ejection fraction.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Insuficiência da Valva Pulmonar , Tetralogia de Fallot , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Humanos , Valor Preditivo dos Testes , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/etiologia , Insuficiência da Valva Pulmonar/cirurgia , Tetralogia de Fallot/complicações , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Função Ventricular Direita
8.
Stat Atlases Comput Models Heart ; 13593: 112-122, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37251544

RESUMO

The current study proposes an efficient strategy for exploiting the statistical power of cardiac atlases to investigate whether clinically significant variations in ventricular shape are sufficient to explain corresponding differences in ventricular wall motion directly, or if they are indirect markers of altered myocardial mechanical properties. This study was conducted in a cohort of patients with repaired tetralogy of Fallot (rTOF) that face long-term right ventricular (RV) and/or left ventricular (LV) dysfunction as a consequence of adverse remodeling. Features of biventricular end-diastolic (ED) shape associated with RV apical dilation, LV dilation, RV basal bulging, and LV conicity correlated with components of systolic wall motion (SWM) that contribute most to differences in global systolic function. A finite element analysis of systolic biventricular mechanics was employed to assess the effect of perturbations in these ED shape modes on corresponding components of SWM. Perturbations to ED shape modes and myocardial contractility explained observed variation in SWM to varying degrees. In some cases, shape markers were partial determinants of systolic function and, in other cases, they were indirect markers for altered myocardial mechanical properties. Patients with rTOF may benefit from an atlas-based analysis of biventricular mechanics to improve prognosis and gain mechanistic insight into underlying myocardial pathophysiology.

9.
J Comput Sci ; 522021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691293

RESUMO

Increased availability and access to medical image data has enabled more quantitative approaches to clinical diagnosis, prognosis, and treatment planning for congenital heart disease. Here we present an overview of long-term clinical management of tetralogy of Fallot (TOF) and its intersection with novel computational and data science approaches to discovering biomarkers of functional and prognostic importance. Efforts in translational medicine that seek to address the clinical challenges associated with cardiovascular diseases using personalized and precision-based approaches are then discussed. The considerations and challenges of translational cardiovascular medicine are reviewed, and examples of digital platforms with collaborative, cloud-based, and scalable design are provided.

10.
J Cardiovasc Magn Reson ; 23(1): 105, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34615541

RESUMO

BACKGROUND: Relationships between right ventricular (RV) and left ventricular (LV) shape and function may be useful in determining optimal timing for pulmonary valve replacement in patients with repaired tetralogy of Fallot (rTOF). However, these are multivariate and difficult to quantify. We aimed to quantify variations in biventricular shape associated with pulmonary regurgitant volume (PRV) in rTOF using a biventricular atlas. METHODS: In this cross-sectional retrospective study, a biventricular shape model was customized to cardiovascular magnetic resonance (CMR) images from 88 rTOF patients (median age 16, inter-quartile range 11.8-24.3 years). Morphometric scores quantifying biventricular shape at end-diastole and end-systole were computed using principal component analysis. Multivariate linear regression was used to quantify biventricular shape associations with PRV, corrected for age, sex, height, and weight. Regional associations were confirmed by univariate correlations with distances and angles computed from the models, as well as global systolic strains computed from changes in arc length from end-diastole to end-systole. RESULTS: PRV was significantly associated with 5 biventricular morphometric scores, independent of covariates, and accounted for 12.3% of total shape variation (p < 0.05). Increasing PRV was associated with RV dilation and basal bulging, in conjunction with decreased LV septal-lateral dimension (LV flattening) and systolic septal motion towards the RV (all p < 0.05). Increased global RV radial, longitudinal, circumferential and LV radial systolic strains were significantly associated with increased PRV (all p < 0.05). CONCLUSION: A biventricular atlas of rTOF patients quantified multivariate relationships between left-right ventricular morphometry and wall motion with pulmonary regurgitation. Regional RV dilation, LV reduction, LV septal-lateral flattening and increased RV strain were all associated with increased pulmonary regurgitant volume. Morphometric scores provide simple metrics linking mechanisms for structural and functional alteration with important clinical indices.


Assuntos
Insuficiência da Valva Pulmonar , Tetralogia de Fallot , Adolescente , Adulto , Criança , Estudos Transversais , Humanos , Valor Preditivo dos Testes , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/etiologia , Estudos Retrospectivos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Função Ventricular Direita , Adulto Jovem
11.
Nat Commun ; 12(1): 3764, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145265

RESUMO

Post-surgical cardiac adhesions represent a significant problem during routine cardiothoracic procedures. This fibrous tissue can impair heart function and inhibit surgical access in reoperation procedures. Here, we propose a hydrogel barrier composed of oxime crosslinked poly(ethylene glycol) (PEG) with the inclusion of a catechol (Cat) group to improve retention on the heart for pericardial adhesion prevention. This three component system is comprised of aldehyde (Ald), aminooxy (AO), and Cat functionalized PEG mixed to form the final gel (Ald-AO-Cat). Ald-AO-Cat has favorable mechanical properties, degradation kinetics, and minimal swelling, as well as superior tissue retention compared to an initial Ald-AO gel formulation. We show that the material is cytocompatible, resists cell adhesion, and led to a reduction in the severity of adhesions in an in vivo rat model. We further show feasibility in a pilot porcine study. The Ald-AO-Cat hydrogel barrier may therefore serve as a promising solution for preventing post-surgical cardiac adhesions.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Hidrogéis/química , Hidrogéis/uso terapêutico , Aderências Teciduais/prevenção & controle , Aldeídos/química , Animais , Materiais Biocompatíveis/química , Catecóis/química , Linhagem Celular , Masculino , Camundongos , Oximas/química , Oximas/uso terapêutico , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Suínos
12.
Europace ; 23(23 Suppl 1): i88-i95, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33751079

RESUMO

AIMS: Ventricular activation patterns can aid clinical decision-making directly by providing spatial information on cardiac electrical activation or indirectly through derived clinical indices. The aim of this work was to derive an atlas of the major modes of variation of ventricular activation from model-predicted 3D bi-ventricular activation time distributions and to relate these modes to corresponding vectorcardiograms (VCGs). We investigated how the resulting dimensionality reduction can improve and accelerate the estimation of activation patterns from surface electrogram measurements. METHODS AND RESULTS: Atlases of activation time (AT) and VCGs were derived using principal component analysis on a dataset of simulated electrophysiology simulations computed on eight patient-specific bi-ventricular geometries. The atlases provided significant dimensionality reduction, and the modes of variation in the two atlases described similar features. Utility of the atlases was assessed by resolving clinical waveforms against them and the VCG atlas was able to accurately reconstruct the patient VCGs with fewer than 10 modes. A sensitivity analysis between the two atlases was performed by calculating a compact Jacobian. Finally, VCGs generated by varying AT atlas modes were compared with clinical VCGs to estimate patient-specific activation maps, and the resulting errors between the clinical and atlas-based VCGs were less than those from more computationally expensive method. CONCLUSION: Atlases of activation and VCGs represent a new method of identifying and relating the features of these high-dimensional signals that capture the major sources of variation between patients and may aid in identifying novel clinical indices of arrhythmia risk or therapeutic outcome.


Assuntos
Arritmias Cardíacas , Coração , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
13.
Front Cardiovasc Med ; 8: 806107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127866

RESUMO

Remodeling in adults with repaired tetralogy of Fallot (rToF) may occur due to chronic pulmonary regurgitation, but may also be related to altered flow patterns, including vortices. We aimed to correlate and quantify relationships between vorticity and ventricular shape derived from atlas-based analysis of biventricular shape. Adult rToF (n = 12) patients underwent 4D flow and cine MRI imaging. Vorticity in the RV was computed after noise reduction using a neural network. A biventricular shape atlas built from 95 rToF patients was used to derive principal component modes, which were associated with vorticity and pulmonary regurgitant volume (PRV) using univariate and multivariate linear regression. Univariate analysis showed that indexed PRV correlated with 3 modes (r = -0.55,-0.50, and 0.6, all p < 0.05) associated with RV dilatation and an increase in basal bulging, apical bulging and tricuspid annulus tilting with more severe regurgitation, as well as a smaller LV and paradoxical movement of the septum. RV outflow and inflow vorticity were also correlated with these modes. However, total vorticity over the whole RV was correlated with two different modes (r = -0.62,-0.69, both p < 0.05). Higher vorticity was associated with both RV and LV shape changes including longer ventricular length, a larger bulge beside the tricuspid valve, and distinct tricuspid tilting. RV flow vorticity was associated with changes in biventricular geometry, distinct from associations with PRV. Flow vorticity may provide additional mechanistic information in rToF remodeling. Both LV and RV shapes are important in rToF RV flow patterns.

14.
Cardiooncology ; 6: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782827

RESUMO

BACKGROUND: Adverse cardiac remodeling is an important precursor to anthracycline-related cardiac dysfunction, however conventional remodeling indices are limited. We sought to examine the utility of statistical atlas-derived measures of ventricular shape to improve the identification of adverse anthracycline-related remodeling in childhood cancer survivors. METHODS: We analyzed cardiac magnetic resonance imaging from a cross-sectional cohort of 20 childhood cancer survivors who were treated with low (< 250 mg/m2 [N = 10]) or high (≥250 mg/m2 [N = 10]) dose anthracyclines, matched 1:1 by sex and age between dose groups. We reconstructed 3D computational models of left ventricular end-diastolic shape for each subject and assessed the ability of conventional remodeling indices (volume, mass, and mass to volume ratio) vs. shape modes derived from a statistical shape atlas of an asymptomatic reference population to stratify anthracycline-related remodeling. We compared conventional parameters and five atlas-based shape modes: 1) between survivors and the reference population (N = 1991) using multivariable linear regression, and 2) within survivors by anthracycline dose (low versus high) using two-sided T-tests, multivariable logistic regression, and receiver operating characteristic curves. RESULTS: Compared with the reference population, survivors had differences in conventional measures (lower volume and mass) and shape modes (corresponding to lower overall size and lower sphericity; all p < 0.001). Among survivors, differences in a shape mode corresponding to increased basal cavity size and altered mitral annular orientation in the high-dose group were observed (p = 0.039). Collectively, atlas-based shape modes in conjunction with conventional measures discriminated survivors who received low vs. high anthracycline dosage (area under the curve [AUC] 0.930, 95% confidence interval 0.816, 1.00) significantly better than conventional measures alone (AUC 0.710, 95% confidence interval 0.473, 0.947; AUC comparison p = 0.0498). CONCLUSIONS: Compared with a reference population, heart size is smaller in anthracycline-exposed childhood cancer survivors. Atlas-based measures of left ventricular shape may improve the detection of anthracycline dose-related remodeling differences.

15.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190336, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448062

RESUMO

Cardiac myocytes transduce changes in mechanical loading into cellular responses via interacting cell signalling pathways. We previously reported a logic-based ordinary differential equation model of the myocyte mechanosignalling network that correctly predicts 78% of independent experimental results not used to formulate the original model. Here, we use Monte Carlo and polynomial chaos expansion simulations to examine the effects of uncertainty in parameter values, model logic and experimental validation data on the assessed accuracy of that model. The prediction accuracy of the model was robust to parameter changes over a wide range being least sensitive to uncertainty in time constants and most affected by uncertainty in reaction weights. Quantifying epistemic uncertainty in the reaction logic of the model showed that while replacing 'OR' with 'AND' reactions greatly reduced model accuracy, replacing 'AND' with 'OR' reactions was more likely to maintain or even improve accuracy. Finally, data uncertainty had a modest effect on assessment of model accuracy. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Mecanotransdução Celular , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Incerteza
16.
J Cardiovasc Magn Reson ; 22(1): 21, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241289

RESUMO

BACKGROUND: Pressure overload left ventricular (LV) hypertrophy is characterized by increased cardiomyocyte width and ventricle wall thickness, however the regional variation of this remodeling is unclear. Cardiovascular magnetic resonance (CMR) diffusion tensor imaging (DTI) may provide a non-invasive, comprehensive, and geometrically accurate method to detect regional differences in structural remodeling in hypertrophy. We hypothesized that DTI parameters, such as fractional and planar anisotropy, would reflect myocyte remodeling due to pressure overload in a regionally-dependent manner. METHODS: We investigated the regional distributions of myocyte remodeling in rats with or without transverse aortic constriction (TAC) via direct measurement of myocyte dimensions with confocal imaging of thick tissue sections, and correlated myocyte cross-sectional area and other geometric features with parameters of diffusivity from ex-vivo DTI in the same regions of the same hearts. RESULTS: We observed regional differences in several parameters from DTI between TAC hearts and SHAM controls. Consistent with previous studies, helix angles from DTI correlated strongly with those measured directly from histological sections (p < 0.001, R2 = 0.71). There was a transmural gradient in myocyte cross-sectional area in SHAM hearts that was diminished in the TAC group. We also found several regions of significantly altered DTI parameters in TAC LV compared to SHAM, especially in myocyte sheet angle dispersion and planar anisotropy. Among others, these parameters correlated significantly with directly measured myocyte aspect ratios. CONCLUSIONS: These results show that structural remodeling in pressure overload LV hypertrophy is regionally heterogeneous, especially transmurally, with a greater degree of remodeling in the sub-endocardium compared to the sub-epicardium. Additionally, several parameters derived from DTI correlated significantly with measurements of myocyte geometry from direct measurement in histological sections. We suggest that DTI may provide a non-invasive, comprehensive method to detect regional structural myocyte LV remodeling during disease.


Assuntos
Tamanho Celular , Imagem de Tensor de Difusão , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Miócitos Cardíacos/patologia , Função Ventricular Esquerda , Pressão Ventricular , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Valor Preditivo dos Testes , Ratos Sprague-Dawley
17.
Magn Reson Med ; 84(4): 1868-1880, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32125040

RESUMO

PURPOSE: Structure-guided total variation is a recently introduced prior that allows reconstruction of images using knowledge of the location and orientation of edges in a reference image. In this work, we demonstrate the advantages of a variant of structure-guided total variation known as directional total variation (DTV), over traditional total variation (TV), in the context of compressed-sensing reconstruction and super-resolution. METHODS: We compared TV and DTV in retrospectively undersampled ex vivo diffusion tensor imaging and diffusion spectrum imaging data from healthy, sham, and hypertrophic rat hearts. RESULTS: In compressed sensing at an undersampling factor of 8, the RMS error of mean diffusivity and fractional anisotropy relative to the fully sampled ground truth were 44% and 20% lower in DTV compared with TV. In super-resolution, these values were 29% and 14%, respectively. Similarly, we observed improvements in helix angle, transverse angle, sheetlet elevation, and sheetlet azimuth. The RMS error of the diffusion kurtosis in the undersampled data relative to the ground truth was uniformly lower (22% on average) with DTV compared to TV. CONCLUSION: Acquiring one fully sampled non-diffusion-weighted image and 10 diffusion-weighted images at 8× undersampling would result in an 80% net reduction in data needed. We demonstrate efficacy of the DTV algorithm over TV in reducing data sampling requirements, which can be translated into higher apparent resolution and potentially shorter scan times. This method would be equally applicable in diffusion MRI applications outside the heart.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Ratos , Estudos Retrospectivos
18.
Exp Biol Med (Maywood) ; 245(8): 748-757, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32183553

RESUMO

IMPACT STATEMENT: The incidence of HFpEF continues to increase and ∼2/3 of the patient population are post-menopausal women. Unfortunately, most studies focus on the use of male animal models of remodeling. In this study, however, using female rats to set a model of pre-HFpEF, we provide insights to possible mechanisms that contribute to HFpEF development in humans that will lead us to a better understanding of the underlying pathophysiology of HFpEF.


Assuntos
Citocinas/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Remodelação Ventricular , Animais , Apoptose , Citocinas/genética , Feminino , Insuficiência Cardíaca/patologia , Ventrículos do Coração/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Carbonilação Proteica , Ratos , Ratos Endogâmicos F344 , Troponina I/genética , Troponina I/metabolismo
19.
Biomech Model Mechanobiol ; 19(3): 1079-1089, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31813071

RESUMO

Mechanics-based cardiac growth models can now predict changes in mass, chamber size, and wall thickness in response to perturbations such as pressure overload (PO), volume overload, and myocardial infarction with a single set of growth parameters. As these models move toward clinical applications, many of the most interesting applications involve predictions of whether or how a patient's heart will reverse its growth after an intervention. In the case of PO, significant regression in wall thickness is observed both experimentally and clinically following relief of overload, for example following replacement of a stenotic aortic valve. Therefore, the objective of this work was to evaluate the ability of a published cardiac growth model that captures forward growth in multiple situations to predict growth reversal following relief of PO. Using a finite element model of a beating canine heart coupled to a circuit model of the circulation, we quantitatively matched hemodynamic data from a canine study of aortic banding followed by unbanding. Surprisingly, although the growth model correctly predicted the time course of PO-induced hypertrophy, it predicted only limited growth reversal given the measured unbanding hemodynamics, contradicting experimental and clinical observations. We were able to resolve this discrepancy only by incorporating an evolving homeostatic setpoint for the governing growth equations. Furthermore, our analysis suggests that many strain- and stress-based growth laws using the traditional volumetric growth framework will have similar difficulties capturing regression following the relief of PO unless growth setpoints are allowed to evolve.


Assuntos
Hipertrofia/fisiopatologia , Contração Miocárdica/fisiologia , Algoritmos , Animais , Simulação por Computador , Constrição Patológica/fisiopatologia , Cães , Análise de Elementos Finitos , Coração , Insuficiência Cardíaca , Hemodinâmica , Homeostase , Humanos , Modelos Cardiovasculares , Infarto do Miocárdio , Análise de Regressão , Estresse Mecânico
20.
J Physiol ; 597(7): 1805-1817, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681142

RESUMO

KEY POINTS: Heart failure with preserved ejection fraction (HFpEF) is seen more frequently in older women; risk factors include age, hypertension and excess weight. No female animal models of early stage remodelling (pre-HFpEF) have examined the effects that the convergence of such factors have on cardiac structure and function. In this study, we demonstrate that ageing can lead to the development of mild chamber remodelling, diffuse fibrosis and loss of diastolic function. The loss of oestrogens further aggravates such changes by leading to a notable drop in cardiac output (while preserving normal ejection fraction) in the presence of diffuse fibrosis that is more predominant in endocardium and is accompanied by papillary fibrosis. Excess weight did not markedly aggravate such findings. This animal model recapitulates many of the features recognized in older, female HFpEF patients and thus, may serve to examine the effects of candidate therapeutic agents. ABSTRACT: Two-thirds of patients with heart failure with preserved ejection fraction (HFpEF) are older women, and risk factors include hypertension and excess weight/obesity. Pathophysiological factors that drive early disease development (before heart failure ensues) remain obscure and female animal models are lacking. The study evaluated the intersecting roles of ageing, oestrogen depletion and excess weight on altering cardiac structure/function. Female, 18-month-old, Fischer F344 rats were divided into an aged group, aged + ovariectomy (OVX) and aged + ovariectomy + 10% fructose (OVF) in drinking water (n = 8-16/group) to induce weight gain. Left ventricular (LV) structure/function was monitored by echocardiography. At 22 months of age, animals were anaesthetized and catheter-based haemodynamics evaluated, followed by histological measures of chamber morphometry and collagen density. All aged animals developed hypertension. OVF animals increased body weight. Echocardiography only detected mild chamber remodelling with ageing while intraventricular pressure-volume loop analysis showed significant (P < 0.05) decreases vs. ageing in stroke volume (13% OVX and 15% for OVF), stroke work (34% and 52%) and cardiac output (29% and 27%), and increases in relaxation time (10% OVX) with preserved ejection fraction. Histology indicated papillary and interstitial fibrosis with ageing, which was higher in the endocardium of OVX and OVF groups. With ageing, ovariectomy leads to the loss of diastolic and global LV function while preserving ejection fraction. This model recapitulates many cardiovascular features present in HFpEF patients and may help understand the roles that ageing and oestrogen depletion play in early (pre-HFpEF) disease development.


Assuntos
Estrogênios/metabolismo , Fibrose/patologia , Ventrículos do Coração/anatomia & histologia , Função Ventricular/fisiologia , Remodelação Ventricular/fisiologia , Envelhecimento , Animais , Colágeno/metabolismo , Ecocardiografia , Feminino , Cardiopatias , Ventrículos do Coração/patologia , Hemodinâmica , Ovariectomia , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...