Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Brain Struct Funct ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916724

RESUMO

In layer II of the entorhinal cortex, the principal neurons that project to the dentate gyrus and the CA3/2 hippocampal fields markedly express the large glycoprotein reelin (Re + ECLII neurons). In rodents, neurons located at the dorsal extreme of the EC, which border the rhinal fissure, express the highest levels, and the expression gradually decreases at levels successively further away from the rhinal fissure. Here, we test two predictions deducible from the hypothesis that reelin expression is strongly correlated with neuronal metabolic rate. Since the mitochondrial turnover rate serves as a proxy for energy expenditure, the mitophagy rate arguably also qualifies as such. Because messenger RNA of the canonical promitophagic BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) is known to be highly expressed in the EC, we predicted that Bnip3 would be upregulated in Re + ECLII neurons, and that the degree of upregulation would strongly correlate with the expression level of reelin in these neurons. We confirm both predictions, supporting that the energy requirement of Re + ECLII neurons is generally high and that there is a systematic increase in metabolic rate as one moves successively closer to the rhinal fissure. Intriguingly, the systematic variation in energy requirement of the neurons that manifest the observed reelin gradient appears to be consonant with the level of spatial and temporal detail by which they encode information about the external environment.

2.
Lancet Digit Health ; 5(7): e467-e476, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37391266

RESUMO

The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, and whether they are suitable for professionals to make management decisions. We review underpinning methods and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. Used correctly, they might improve health care and support research.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doença da Artéria Coronariana , Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Humanos , Doenças Cardiovasculares/diagnóstico
3.
Elife ; 112022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801695

RESUMO

Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.


Assuntos
Fosforilação Oxidativa , Superóxidos , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
4.
PLoS One ; 17(2): e0263155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108311

RESUMO

With limited availability of vaccines, an efficient use of the limited supply of vaccines in order to achieve herd immunity will be an important tool to combat the wide-spread prevalence of COVID-19. Here, we compare a selection of strategies for vaccine distribution, including a novel targeted vaccination approach (EHR) that provides a noticeable increase in vaccine impact on disease spread compared to age-prioritized and random selection vaccination schemes. Using high-fidelity individual-based computer simulations with Oslo, Norway as an example, we find that for a community reproductive number in a setting where the base pre-vaccination reproduction number R = 2.1 without population immunity, the EHR method reaches herd immunity at 48% of the population vaccinated with 90% efficiency, whereas the common age-prioritized approach needs 89%, and a population-wide random selection approach requires 61%. We find that age-based strategies have a substantially weaker impact on epidemic spread and struggle to achieve herd immunity under the majority of conditions. Furthermore, the vaccination of minors is essential to achieving herd immunity, even for ideal vaccines providing 100% protection.


Assuntos
Vacinas contra COVID-19/provisão & distribuição , COVID-19/prevenção & controle , COVID-19/genética , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/farmacologia , Epidemias , Humanos , Imunidade Coletiva/imunologia , Modelos Teóricos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Vacinação , Vacinas
6.
BMC Infect Dis ; 21(1): 548, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107917

RESUMO

BACKGROUND: While invasive social distancing measures have proven efficient to control the spread of pandemics failing wide-scale deployment of vaccines, they carry vast societal costs. The development of a diagnostic methodology for identifying COVID-19 infection through simple testing was a reality only a few weeks after the novel virus was officially announced. Thus, we were interested in exploring the ability of regular testing of non-symptomatic people to reduce cases and thereby offer a non-pharmaceutical tool for controlling the spread of a pandemic. METHODS: We developed a data-driven individual-based epidemiological network model in order to investigate epidemic countermeasures. This models is based on high-resolution demographic data for each municipality in Norway, and each person in the model is subject to Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics. The model was calibrated against hospitalization data in Oslo, Norway, a city with a population of 700k which we have used as the simulations focus. RESULTS: Finding that large households function as hubs for the propagation of COVID-19, we assess the intervention efficiency of targeted pooled household testing (TPHT) repeatedly. For an outbreak with reproductive number R=1.4, we find that weekly TPHT of the 25% largest households brings R below unity. For the case of R=1.2, our results suggest that TPHT with the largest 25% of households every three days in an urban area is as effective as a lockdown in curbing the outbreak. Our investigations of different disease parameters suggest that these results are markedly improved for disease variants that more easily infect young people, and when compliance with self-isolation rules is less than perfect among suspected symptomatic cases. These results are quite robust to changes in the testing frequency, city size, and the household-size distribution. Our results are robust even with only 50% of households willing to participate in TPHT, provided the total number of tests stay unchanged. CONCLUSIONS: Pooled and targeted household testing appears to be a powerful non-pharmaceutical alternative to more invasive social-distancing and lock-down measures as a localized early response to contain epidemic outbreaks.


Assuntos
Controle de Doenças Transmissíveis/métodos , Pandemias/prevenção & controle , Adolescente , Infecções Assintomáticas/epidemiologia , Número Básico de Reprodução , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Teste para COVID-19/métodos , Surtos de Doenças/prevenção & controle , Características da Família , Hospitalização , Humanos , Modelos Teóricos , Noruega/epidemiologia , SARS-CoV-2/isolamento & purificação
7.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031251

RESUMO

Each animal in the Darwinian theater is exposed to a number of abiotic and biotic risk factors causing mortality. Several of these risk factors are intimately associated with the act of energy acquisition as such and with the amount of reserve the organism has available from this acquisition for overcoming temporary distress. Because a considerable fraction of an individual's lifetime energy acquisition is spent on somatic maintenance, there is a close link between energy expenditure on somatic maintenance and mortality risk. Here, we show, by simple life-history theory reasoning backed up by empirical cohort survivorship data, how reduction of mortality risk might be achieved by restraining allocation to somatic maintenance, which enhances lifetime fitness but results in aging. Our results predict the ubiquitous presence of senescent individuals in a highly diverse group of natural animal populations, which may display constant, increasing, or decreasing mortality with age. This suggests that allocation to somatic maintenance is primarily tuned to expected life span by stabilizing selection and is not necessarily traded against reproductive effort or other traits. Due to this ubiquitous strategy of modulating the somatic maintenance budget so as to increase fitness under natural conditions, it follows that individuals kept in protected environments with very low environmental mortality risk will have their expected life span primarily defined by somatic damage accumulation mechanisms laid down by natural selection in the wild.


Assuntos
Envelhecimento , Aptidão Genética , Características de História de Vida , Modelos Biológicos , Seleção Genética , Animais , Feminino , Masculino
8.
Med Eng Phys ; 72: 38-48, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554575

RESUMO

The aim of this position paper is to provide a brief overview of the current status of cardiovascular modelling and of the processes required and some of the challenges to be addressed to see wider exploitation in both personal health management and clinical practice. In most branches of engineering the concept of the digital twin, informed by extensive and continuous monitoring and coupled with robust data assimilation and simulation techniques, is gaining traction: the Gartner Group listed it as one of the top ten digital trends in 2018. The cardiovascular modelling community is starting to develop a much more systematic approach to the combination of physics, mathematics, control theory, artificial intelligence, machine learning, computer science and advanced engineering methodology, as well as working more closely with the clinical community to better understand and exploit physiological measurements, and indeed to develop jointly better measurement protocols informed by model-based understanding. Developments in physiological modelling, model personalisation, model outcome uncertainty, and the role of models in clinical decision support are addressed and 'where-next' steps and challenges discussed.


Assuntos
Modelos Cardiovasculares , Medicina de Precisão/métodos , Reserva Fracionada de Fluxo Miocárdico , Humanos , Incerteza
9.
Proc Natl Acad Sci U S A ; 114(37): 9894-9899, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847942

RESUMO

The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.


Assuntos
Barreira Hematoencefálica/metabolismo , Líquidos Corporais/metabolismo , Difusão , Líquido Extracelular/metabolismo , Hipocampo/metabolismo , Neurópilo/fisiologia , Animais , Transporte Biológico , Líquido Cefalorraquidiano/metabolismo , Simulação por Computador , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Humanos , Imageamento Tridimensional , Vasos Linfáticos/fisiologia , Microscopia Eletrônica
10.
BMC Genomics ; 18(1): 484, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655320

RESUMO

We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.


Assuntos
Aquicultura , Conservação dos Recursos Naturais , Genômica , Internacionalidade , Anotação de Sequência Molecular , Salmonidae/genética , Animais , Evolução Molecular , Genômica/economia , Genômica/normas , Fenótipo , Filogenia
11.
Mol Syst Biol ; 12(12): 892, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979908

RESUMO

A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical-experimental framework for disclosing the presence of such adaptation-speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation-accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic-adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data-driven individual-based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation-speeding mechanisms in general.


Assuntos
Arsênio/farmacologia , Proteínas de Bactérias/genética , Epigênese Genética , Mutação , Saccharomycetales/crescimento & desenvolvimento , Adaptação Fisiológica , Evolução Molecular , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Seleção Genética , Análise de Sequência de DNA , Biologia de Sistemas/métodos
12.
J Physiol ; 594(23): 6909-6928, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27506597

RESUMO

Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model.


Assuntos
Circulação Sanguínea , Modelos Cardiovasculares , Fenômenos Fisiológicos Cardiovasculares , Hemodinâmica , Humanos , Software
13.
G3 (Bethesda) ; 6(9): 3003-14, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27371952

RESUMO

The capacity to map traits over large cohorts of individuals-phenomics-lags far behind the explosive development in genomics. For microbes, the estimation of growth is the key phenotype because of its link to fitness. We introduce an automated microbial phenomics framework that delivers accurate, precise, and highly resolved growth phenotypes at an unprecedented scale. Advancements were achieved through the introduction of transmissive scanning hardware and software technology, frequent acquisition of exact colony population size measurements, extraction of population growth rates from growth curves, and removal of spatial bias by reference-surface normalization. Our prototype arrangement automatically records and analyzes close to 100,000 growth curves in parallel. We demonstrate the power of the approach by extending and nuancing the known salt-defense biology in baker's yeast. The introduced framework represents a major advance in microbial phenomics by providing high-quality data for extensive cohorts of individuals and generating well-populated and standardized phenomics databases.


Assuntos
Genômica/métodos , Saccharomyces cerevisiae/genética , Software , Bases de Dados Genéticas , Aptidão Genética , Humanos , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento
14.
Sci Rep ; 6: 28969, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27373344

RESUMO

In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning. Molecular dynamics simulations predict that melanocortin 2 receptor accessory protein (MRAP), needed for MC2R function, binds differently to the two MC1R variants. Considering that mRNA for MC2R and the MC1R variants are present in head kidney cells, we hypothesized that MC2R activity is modulated in part by different binding affinities of the MC1R variants for MRAP. Experiments in mammalian cells confirmed that trout MRAP interacts with the two trout MC1R variants and MC2R, but failed to detect regulation of MC2R signaling, possibly due to high constitutive MC1R activity.


Assuntos
Regulação da Expressão Gênica , Oncorhynchus mykiss/fisiologia , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 2 de Melanocortina/biossíntese , Receptores do Hormônio Hipofisário/metabolismo , Estresse Fisiológico , Animais , Expressão Gênica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , RNA Mensageiro/biossíntese , Receptores do Hormônio Hipofisário/genética
15.
Nature ; 533(7602): 200-5, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27088604

RESUMO

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


Assuntos
Diploide , Evolução Molecular , Duplicação Gênica/genética , Genes Duplicados/genética , Genoma/genética , Salmo salar/genética , Animais , Elementos de DNA Transponíveis/genética , Feminino , Genômica , Masculino , Modelos Genéticos , Mutagênese/genética , Filogenia , Padrões de Referência , Salmo salar/classificação , Homologia de Sequência
16.
J R Soc Interface ; 12(106)2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25833237

RESUMO

A scientific understanding of individual variation is key to personalized medicine, integrating genotypic and phenotypic information via computational physiology. Genetic effects are often context-dependent, differing between genetic backgrounds or physiological states such as disease. Here, we analyse in silico genotype-phenotype maps (GP map) for a soft-tissue mechanics model of the passive inflation phase of the heartbeat, contrasting the effects of microstructural and other low-level parameters assumed to be genetically influenced, under normal, concentrically hypertrophic and eccentrically hypertrophic geometries. For a large number of parameter scenarios, representing mock genetic variation in low-level parameters, we computed phenotypes describing the deformation of the heart during inflation. The GP map was characterized by variance decompositions for each phenotype with respect to each parameter. As hypothesized, the concentric geometry allowed more low-level parameters to contribute to variation in shape phenotypes. In addition, the relative importance of overall stiffness and fibre stiffness differed between geometries. Otherwise, the GP map was largely similar for the different heart geometries, with little genetic interaction between the parameters included in this study. We argue that personalized medicine can benefit from a combination of causally cohesive genotype-phenotype modelling, and strategic phenotyping that captures effect modifiers not explicitly included in the mechanistic model.


Assuntos
Evolução Biológica , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Simulação por Computador , Módulo de Elasticidade , Genótipo , Humanos , Modelos Genéticos , Fenótipo , Estresse Mecânico
17.
PLoS One ; 10(2): e0118052, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706524

RESUMO

Single-channel optical density measurements of population growth are the dominant large scale phenotyping methodology for bridging the gene-function gap in yeast. However, a substantial amount of the genetic variation induced by single allele, single gene or double gene knock-out technologies fail to manifest in detectable growth phenotypes under conditions readily testable in the laboratory. Thus, new high-throughput phenotyping technologies capable of providing information about molecular level consequences of genetic variation are sorely needed. Here we report a protocol for high-throughput Fourier transform infrared spectroscopy (FTIR) measuring biochemical fingerprints of yeast strains. It includes high-throughput cultivation for FTIR spectroscopy, FTIR measurements and spectral pre-treatment to increase measurement accuracy. We demonstrate its capacity to distinguish not only yeast genera, species and populations, but also strains that differ only by a single gene, its excellent signal-to-noise ratio and its relative robustness to measurement bias. Finally, we illustrated its applicability by determining the FTIR signatures of all viable Saccharomyces cerevisiae single gene knock-outs corresponding to lipid biosynthesis genes. Many of the examined knock-out strains showed distinct, highly reproducible FTIR phenotypes despite having no detectable growth phenotype. These phenotypes were confirmed by conventional lipid analysis and could be linked to specific changes in lipid composition. We conclude that the introduced protocol is robust to noise and bias, possible to apply on a very large scale, and capable of generating biologically meaningful biochemical fingerprints that are strain specific, even when strains lack detectable growth phenotypes. Thus, it has a substantial potential for application in the molecular functionalization of the yeast genome.


Assuntos
Genes Fúngicos/genética , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Alelos , Variação Genética/genética , Lipídeos/genética , Fenótipo , Razão Sinal-Ruído , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
PLoS Comput Biol ; 11(1): e1004012, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569257

RESUMO

This year we celebrate the 150th anniversary of the law of mass action. This law is often assumed to have been "there" forever, but it has its own history, background, and a definite starting point. The law has had an impact on chemistry, biochemistry, biomathematics, and systems biology that is difficult to overestimate. It is easily recognized that it is the direct basis for computational enzyme kinetics, ecological systems models, and models for the spread of diseases. The article reviews the explicit and implicit role of the law of mass action in systems biology and reveals how the original, more general formulation of the law emerged one hundred years later ab initio as a very general, canonical representation of biological processes.


Assuntos
Fenômenos Bioquímicos , Modelos Biológicos , Biologia de Sistemas , Cinética
19.
Mol Biol Evol ; 32(1): 153-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25349282

RESUMO

Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection.


Assuntos
Nitrogênio/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular , Aptidão Genética , Genótipo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética
20.
Comput Biol Med ; 53: 65-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25129018

RESUMO

The mouse is an important model for theoretical-experimental cardiac research, and biophysically based whole organ models of the mouse heart are now within reach. However, the passive material properties of mouse myocardium have not been much studied. We present an experimental setup and associated computational pipeline to quantify these stiffness properties. A mouse heart was excised and the left ventricle experimentally inflated from 0 to 1.44kPa in eleven steps, and the resulting deformation was estimated by echocardiography and speckle tracking. An in silico counterpart to this experiment was built using finite element methods and data on ventricular tissue microstructure from diffusion tensor MRI. This model assumed a hyperelastic, transversely isotropic material law to describe the force-deformation relationship, and was simulated for many parameter scenarios, covering the relevant range of parameter space. To identify well-fitting parameter scenarios, we compared experimental and simulated outcomes across the whole range of pressures, based partly on gross phenotypes (volume, elastic energy, and short- and long-axis diameter), and partly on node positions in the geometrical mesh. This identified a narrow region of experimentally compatible values of the material parameters. Estimation turned out to be more precise when based on changes in gross phenotypes, compared to the prevailing practice of using displacements of the material points. We conclude that the presented experimental setup and computational pipeline is a viable method that deserves wider application.


Assuntos
Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Elasticidade/fisiologia , Coração/fisiologia , Modelos Cardiovasculares , Animais , Imagem de Difusão por Ressonância Magnética , Análise de Elementos Finitos , Camundongos , Função Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...