Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int Immunopharmacol ; 117: 109960, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012865

RESUMO

Acute lymphoblastic leukemia (ALL) is one of the most prevalent cancers in children and microRNA-128 is amongst the most useful biomarkers not only for diagnosis of ALL, but also for discriminating ALL from acute myeloid leukemia (AML). In this study, a novel electrochemical nanobiosensor based on reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) has been fabricated to detect miRNA-128. Cyclic Voltametery (CV), Square Wave Voltametery (SWV) and Electrochemical Impedance Spectroscopy (EIS) have been applied to characterize the nanobiosensor. Hexacyanoferrate as a label-free and methylene blue as a labeling material were used in the design of the nanobiosensors. It was found that the modified electrode has excellent selectivity and sensitivity to miR-128, with a limit of detection of 0.08761 fM in label-free and 0.00956 fM in labeling assay. Additionally, the examination of real serum samples of ALL and AML patients and control cases confirms that the designed nanobiosensor has the potential to detect and discriminate these two cancers and the control samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Criança , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos
3.
Mater Lett ; 3312023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706920

RESUMO

A modular reinforced bone scaffold with enhanced mechanical properties has recently been developed by our group. It includes: 1) A load-bearing module: a skeleton which is made of a slowly degradable material, undertaking mechanical necessities of the scaffold, and 2) A bioreactive module: a porous and biodegradable component undertaking biological necessities of the scaffold. The load-bearing module is placed into the bio-reactive module to reinforce it. This paper is dedicated to optimizing the load-bearing module for a certain customized alveolar bone defect. More specifically, a 3D-printed skeleton, made of polycaprolactone (PCL), is optimized based on the boundary conditions of the defect shape using the finite element method (FEM) to minimize the weight (to minimize the amount of PCL) and maximize the mechanical properties and porosity of the skeleton. Gelatin foam has been incorporated into the optimized skeleton through the aminolysis process to form the bio-reactive module. The mechanical characterization confirmed that the optimized load-bearing module has a bridge-like shape and can significantly improve the mechanical properties of the scaffold. Also, in vitro studies showed that the Revised manuscript (clean version) Click here to view linked References fabricated scaffold can improve cell proliferation and osteogenesis. This kind of scaffold can be useful for the treatment of critical-sized defects.

4.
Dent Mater ; 38(8): 1316-1329, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738951

RESUMO

OBJECTIVES: There are complications in applying regenerative strategies at the interface of hard and soft tissues due to the limited designs of constructs that can accommodate different cell types in different sites. The problem originates from the challenges in the adhesion of dissimilar materials, such as polymers and hydrogels, that can be suitable for regenerating different tissues such as bone and soft tissues. This paper presents a design of a new hybrid construct in which a polymer (polycaprolactone (PCL)) membrane firmly adheres to a layer of hydrogen (gelatin). METHODS: PCL membranes with defined size and porosity were fabricated using 3D printing. The gelatin layer was attached to the PCL membranes using the aminolysis procedure. We have examined this construct for the application of Guided Bone Regeneration (GBR) as a typical surgical regenerative procedure of the oral cavity at the interface of bone and soft tissue. Complete in vitro and in vivo investigations on canine tibia bone defects have been performed. Histological analyses for fibrosis morphometric and bone morphometric evaluation, as well as bone-fibrosis histological grading and CBCT imaging, were conducted. RESULTS: Chemical and morphological studies of the membrane proved that gelatin was uniformly attached to the aminolyzed PCL membranes. The in vitro and in vivo studies indicated the membrane's biocompatibility, mechanical stability, and barrier function for the GBR application. Furthermore, in vitro study showed that the membranes could improve osteogenesis and the regeneration of bone defects. The results illustrated that the mean bone density in the membrane groups was about three times more than that of the control group. SIGNIFICANCE: The fabricated 3D-printed hybrid Gelatin/PCL bi-layered membrane can be a good candidate for interfacial tissue engineering and a promising membrane for GBR procedure.


Assuntos
Gelatina , Hidrogéis , Materiais Biocompatíveis , Regeneração Óssea , Proliferação de Células , Fibrose , Humanos , Poliésteres , Polímeros , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
5.
Adv Pharm Bull ; 12(1): 142-154, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35517875

RESUMO

Purpose: Recently, bone tissue engineering as a new strategy is used to repair and replace bone defects due to limitations in allograft and autograft methods. In this regard, we prepared nanofibrous scaffolds composed of polycaprolactone (PCL) and magnesium oxide (MgO) nanoparticles using the electrospinning technique for possible bone tissue engineering applications. Methods: The fabricated composites were characterized via scanning electron microscopy (SEM) imaging of scaffolds and seeded cells, water contact angle, DAPI staining, and MTT assay. Then osteogenic differentiation of adipose-derived mesenchymal stem cells cultured on this composite scaffold was determined by standard osteogenic marker tests, including alkaline phosphatase (ALP) activity, calcium deposition, and expression of osteogenic differentiation genes in the laboratory conditions. Results: The SEM analysis demonstrated that the diameter of nanofibers significantly decreased from 1029.25±209.349 µm to 537.83+0.140 nm, with the increase of MgO concentration to 2% (P < 0.05). Initial adhesion and proliferation of the adipose-derived mesenchymal stem cells on MgO/PCL scaffolds were significantly enhanced with the increasing of MgO concentration (P < 0.05). The 2% MgO/PCL nanofibrous scaffold showed significant increase in ALP activity (P < 0.05) and osteogenic-related gene expressions (Col1a1 and OPN) (P < 0.05) in compared to pure PCL and (0, 0.5 and 1%) MgO/PCL scaffolds. Conclusion: According to the results, it was demonstrated that MgO/PCL composite nanofibers have considerable osteoinductive potential, and taking together adipose-derived mesenchymal stem cells-MgO/PCL composite nanofibers can be a proper bio-implant to usage for bone regenerative medicine applications. Future in vivo studies are needed to determine this composite therapeutic potential.

6.
Int J Biol Macromol ; 210: 63-75, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537583

RESUMO

In this study, the first CA nanofibers were fabricated by electrospinning under optimal conditions: flow rate of 0.5 ml/h, a voltage of 20 kV, electrospinning distance of 15 cm, and an internal temperature of 25 °C, and humidity of 38%. The used Graphene/gold nanoparticles for CA performance improvement were examined by TGA, XRD, and SEM analysis. Then the CA/graphene­gold nanocomposite was synthesized under optimum electrospinning conditions: flow rate 3 ml/h, voltage 20 kV, electrospinning distance 15 cm, internal temperature 26 °C, and humidity 36%. The SEM images revealed that the nanofibers' thicknesses of Graphene­gold NPs (CA1) and Chitosan (CA2) were 350 and 120 nm, respectively. The XRD diagrams of CA0, CA1 and CA2 revealed the peaks at 2θ, 8°, and 21° with Miller indices of (001) and (110) are related to CA (CA0), which proves its presence in other scaffolds. The FTIR analysis of samples indicated the presence of graphene­gold NPs in scaffolding CA1 and CA2. The CA2 nanofibers exhibited a high-water absorption capacity of about 2500% with the water contact-angle and Swelling method. The antibacterial properties of this nanocomposite were also confirmed by an antibacterial test on Staphylococcus aureus bacteria. The growth of Schwann cells on three scaffolds showed the highest growth of cells on CA1 scaffolds.


Assuntos
Quitosana , Grafite , Nanopartículas Metálicas , Nanocompostos , Nanofibras , Antibacterianos , Celulose/análogos & derivados , Ouro , Água
7.
Eng Life Sci ; 21(11): 739-752, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764826

RESUMO

The development of a rapid, sensitive, and straightforward detection method of prostate-specific antigen (PSA) is indispensable for the early diagnosis of prostate cancer (PCa). This work relates an electrochemical method using functionalized single-stranded DNA aptamer to diagnose PCa and benign prostate hyperplasia. The sensing platform relies on PSA recognition by aptamer/Au/GO-nanohybrid-modified glassy carbon electrode. Besides ferrocyanide TiO2/carbon quantum dots (CQDs) probe is used to investigate the effect of nanoparticle-containing electrolyte. Optimization of incubation time of aptamer/Au/GO-nanohybrid and volume fraction of nafion were done using Design Expert 10 software reporting 42.4 h and 0.095% V/V, respectively. In ferrocyanide medium, PSA detection as low as 3, 2.96, and 0.85 ng mL-1 was achieved with a dynamic range from 0.5 to 7 ng ml-1, in accord with clinical values, using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy, respectively. Moreover, this sensor exhibited conspicuous performance in TiO2/CQDs-containing medium with different pH values of 5.4 and 8 to distinguish total PSA and free PSA, resulting in very low limit of detections, 0.028, and 0.007 ng ml-1, respectively. The results manifested the proposed system as a forthcoming sensor in a clinical and point of care analysis of PSA.

8.
Int J Polym Mater ; 70(2): 117-130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967355

RESUMO

Over recent years, many different nanoparticle-based drug delivery systems (NDDSs) have been developed. Recently the development of stimulus-responsive NDDSs has come into sharper focus. Carbon dots (CDs) possess outstanding features such as useful optical properties, good biocompatibility, and the ability for easy surface modification. Appropriate surface modification can allow these NDDSs to respond to various chemical or physical stimuli that are characteristic of their target cells or tissue (frequently malignant cells or tumors). The present review covers recent developments of CDs in NDDSs with a particular focus on internal stimulus response capability that allows simultaneous imaging and therapeutic delivery (theranostics). Relevant stimuli associated with tumor cells and tumors include pH levels, redox potential, and different enzymatic activities can be used to activate the CDs at the desired sites.

9.
ACS Appl Mater Interfaces ; 13(21): 24370-24384, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34006111

RESUMO

The purpose of the present study is to characterize poly(d,l-lactide-co-glycolide) (PLGA) composite microcarriers for vascular endothelial growth factor (VEGF) delivery. To reduce the initial burst release and protect the bioactivity, VEGF is encapsulated in soybean l-α-phosphatidylethanolamine (PE) and l-α-phosphatidylcholine (PC) anhydrous reverse micelle (VEGF-RM) nanoparticles. Also, mesoporous nano-hexagonal Mg(OH)2 nanostructure (MNS)-loaded PE/PC anhydrous reverse micelle (MNS-RM) nanoparticles are synthesized to suppress the induced inflammation of PLGA acidic byproducts and regulate the release profile. The flow-focusing microfluidic geometry platforms are used to fabricate different combinations of PLGA composite microspheres (PLGA-CMPs) with MNSs, MNS-RM, VEGF-RM, and native VEGF. The essential parameters of each formulation, such as release profiles, encapsulation efficacy, bioactivity, inflammatory response, and cytotoxicity, are investigated by in vitro and in vivo studies. The results indicate that generated acidic byproducts during the hydrolytic degradation process of PLGA can be buffered, and pH values inside and outside microspheres can remain steady during degradation by MNSs. Furthermore, the significant improvement in the stability of the encapsulated VEGF is confirmed by the bioactivity assay. In vitro release study shows that the VEGF initial burst release is well minimized in the present microcarriers. The present monodisperse PLGA-CMPs can be widely used in various tissue engineering and therapeutic applications.


Assuntos
Lipídeos/química , Hidróxido de Magnésio/química , Microesferas , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Dicroísmo Circular , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Tensão Superficial
10.
Ocul Surf ; 21: 27-36, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895367

RESUMO

PURPOSE: Bioactive substrates can be used therapeutically to enhance wound healing. Here, we evaluated the effect of an in-situ thermoresponsive hydrogel from decellularized porcine cornea ECM, COMatrix (COrnea Matrix), for application as an ocular surface bandage for corneal epithelial defects. METHODS: COMatrix hydrogel was fabricated from decellularized porcine corneas. The effects of COMatrix hydrogel on attachment and proliferation of human corneal epithelial cells (HCECs) were evaluated in vitro. The effect of COMatrix on the expressions of the inflammatory genes, IL-1ß, TNF-α, and IL-6 was assessed by RT-PCR. The in-situ application and also repairing effects of COMatrix hydrogel as an ocular bandage was studied in a murine model of corneal epithelial wound. The eyes were examined by optical coherence tomography (OCT) and slit-lamp microscopy in vivo and by histology and immunofluorescence post-mortem. RESULTS: In vitro, COMatrix hydrogel significantly enhanced the attachment and proliferation of HCECs relative to control. HCECs exposed to COMatrix had less induced expression of TNF-α (P < 0.05). In vivo, COMatrix formed a uniform hydrogel that adhered to the murine ocular surface after in-situ curing. Corneal epithelial wound closure was significantly accelerated by COMatrix hydrogel compared to control (P < 0.01). There was significant increase in the expression of proliferation marker Ki-67 in wounded corneal epithelium by COMatrix hydrogel compared to control (P < 0.05). CONCLUSIONS: COMatrix hydrogel is a naturally derived bioactive material with potential application as an ocular surface bandage to enhance epithelial wound healing.


Assuntos
Lesões da Córnea , Epitélio Corneano , Animais , Bandagens , Córnea , Humanos , Hidrogéis , Camundongos , Suínos , Cicatrização
11.
Tissue Eng Part C Methods ; 27(5): 307-321, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813860

RESUMO

Fabricating thermoresponsive hydrogels from decellularized tissues is a trending and promising approach to develop novel biomaterials for tissue engineering and therapeutic purposes. There are differences in the characteristics of the produced hydrogels related to the source tissue as well as the decellularization and solubilization protocols used. Detailed characterization of the hydrogels will support the efforts to optimize their application as biomaterials for tissue engineering and therapeutics. Here, we describe an optimized method for fabricating an in situ thermoresponsive hydrogel from decellularized porcine cornea extracellular matrix (COMatrix), and provide a detailed characterization of its structure, thermoresponsive rheological behavior (heat-induced sol-gel transition), as well as exploring its protein composition using proteomics. COMatrix forms a transparent gel (10-min time to gelation) after in situ curing with heat, characterized by alteration in light absorbance and rheological indexes. The rheological characterization of heat-formed COMatrix gel shows similar behavior to common biomaterials utilized in tissue engineering. The fibrillar structure of COMatrix gel was observed by scanning electron microscopy showing that the density of fibers attenuates in lower concentrations. Mass spectrometry-based proteomic analysis revealed that COMatrix hydrogel is rich in proteins with known regenerative properties such as lumican, keratocan, and laminins in addition to structural collagen proteins (Data is available via ProteomeXchange with identifier PXD020606). COMatrix hydrogel is a naturally driven biomaterial with favorable biomechanical properties and protein content with potential application as a therapeutic biomaterial in ocular regeneration and tissue engineering. Impact statement Fabrication and application of decellularized porcine corneal extracellular matrix is an emerging approach for corneal tissue engineering and regeneration. There are several protocols for decellularization of porcine cornea with various efficiencies. Here, we are presenting an optimized protocol for decellularization of porcine cornea followed by fabrication of a thermoresponsive hydrogel from the decellularized cornea matrix. Moreover, the fabricated hydrogel was rheologically and compositionally characterized as crucial features to be employed for further application of this hydrogel in corneal tissue engineering and regeneration.


Assuntos
Hidrogéis , Proteômica , Animais , Córnea , Matriz Extracelular , Suínos , Engenharia Tecidual
12.
Biotechnol Prog ; 37(4): e3132, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33527746

RESUMO

In this study, a highly porous three-dimensional (3D)-printed wound healing core/shell scaffold fabricated using poly-lactic acid (PLA). The core of scaffold was composed of hyaluronic acid (HA), copper carbon dots (Cu-CDs), rosmarinic acid, and chitosan hydrogel. Cu-CDs were synthesized using ammonium hydrogen citrate under hydrothermal conditions. Formulation containing 1 mg ml-1 concentration of Cu-CDs showed an excellent antibacterial activity against gram bacteria. At 0.25 mg ml-1 of Cu-CDs concentration, scaffold had a good biocompatibility as confirmed by cytotoxicity assay on L929 fibroblast stem cells. in vivo wound healing experiments on groups of rats revealed that after 15 days of treatment, the optimal formulation of composite scaffold significantly improves the wound healing process compared to the PLA scaffold. This finding was confirmed by histological analysis and the relative expression of PDGF, TGF-ß, and MMP-1 genes. The biocompatible antibacterial CU-CDS/PLA/HA/chitosan/rosmarinic acid nanocomposite is a promising wound healing scaffold which highly accelerates the process of skin regeneration.


Assuntos
Quitosana , Nanocompostos , Animais , Antibacterianos/farmacologia , Bandagens , Quitosana/farmacologia , Expressão Gênica , Nanocompostos/uso terapêutico , Ratos , Cicatrização/genética
13.
Proc Inst Mech Eng H ; 235(3): 314-322, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33334243

RESUMO

In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter - with the help of simulation software - to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.


Assuntos
Bioimpressão , Hidrogéis , Alginatos , Sobrevivência Celular , Gelatina , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
14.
Biotechnol Appl Biochem ; 68(3): 616-625, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32533571

RESUMO

In this study, poly (d, l-lactide-co-glycolide) (PLGA) composite microspheres containing anhydrous reverse micelle (R.M.) dipalmitoylphosphatidylcholine (DPPC) nanoparticles loaded vascular endothelial growth factor (VEGF) were produced using microfluidic platforms. The VEGF-loaded R.M. nanoparticles (VRM) were achieved by initial self-assembly and subsequent lipid inversion of the DPPC vesicles. The fabricated VRMs were encapsulated into the PLGA matrix by flow-focusing geometry microfluidic platforms. The encapsulation efficiency, in vitro release profile, and the bioactivity of the produced composite microspheres were investigated. The release study showed that VEGF was slowly released from the PLGA composite microspheres over 28 days with a reduced initial burst (18 â€¯± â€¯4.17% in the first 24 H). The VEGF stability during encapsulation and release period was also investigated, and the results indicated that encapsulated VEGF was well preserved. Also, the bioactivity assay of the PLGA composite microspheres on human umbilical vein endothelial cells was confirmed that the encapsulated VEGF was utterly active. The present monodisperse and controllable VEGF-loaded microspheres with reproducible manner could be widely used in tissue engineering and therapeutic applications.


Assuntos
Técnicas Analíticas Microfluídicas , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fatores de Crescimento do Endotélio Vascular/química , 1,2-Dipalmitoilfosfatidilcolina , Humanos , Micelas , Nanopartículas , Tamanho da Partícula , Propriedades de Superfície
15.
J Mater Sci Mater Med ; 31(11): 97, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33135110

RESUMO

Developing smart scaffolds with drug release capability is one of the main approaches to bone tissue engineering. The current study involves the fabrication of novel gelatin (G)-hydroxyapatite (HA)-/vitamin D (VD)-loaded graphene oxide (GO) scaffolds with different concentrations through solvent-casting method. Characterizations confirmed the successful synthesis of HA and GO, and VD was loaded in GO with 36.87 ± 4.87% encapsulation efficiency. Physicochemical characterizations showed that the scaffold containing 1% VD-loaded GO had the best mechanical properties and its porosity percentage and density was in the range of natural spongy bone. All scaffolds were degraded after 1-month, subjecting to phosphate buffer saline. The release profile of VD did not match any mathematical kinetics model, porosities and the degradation rate of the scaffolds were dominant controlling factors of release behavior. Studies on the bioactivity of scaffolds immersed in simulated body fluid indicated that VD and HA could encourage the formation of secondary apatite crystals in vitro. Buccal fat pad-derived stem cells (BFPSCs) were seeded on the scaffolds, MTT assay, alkaline phosphatase activity as an indicator of osteoconductivity, and cell adhesion were conducted in order to evaluate in vitro biological responses. All scaffolds highly supported cell adhesion, MTT assay indicated better cell viability in 0.5% VD-loaded GO containing scaffold, and the scaffold enriched with 2% VD-loaded GO performed the most ALP activity. The results demonstrated the potential of these scaffolds to induce bone regeneration. Developing smart scaffolds with drug release capability is one of the main approaches to bone tissue engineering. The current study involves the fabrication of novel gelatin (G)-hydroxyapatite (HA)-/vitamin D (VD)-loaded graphene oxide (GO) scaffolds with different concentrations through solvent-casting method. Characterizations confirmed the successful synthesis of HA and GO, and VD was loaded in GO with 36.87 ± 4.87% encapsulation efficiency. Physicochemical characterizations showed that the scaffold containing 1% VD-loaded GO had the best mechanical properties and its porosity percentage and density was in the range of natural spongy bone. All scaffolds were degraded after 1-month, subjecting to phosphate buffer saline. The release profile of VD did not match any mathematical kinetics model, porosities and the degradation rate of the scaffolds were dominant controlling factors of release behavior. Studies on the bioactivity of scaffolds immersed in simulated body fluid indicated that VD and HA could encourage the formation of secondary apatite crystals in vitro. Buccal fat pad-derived stem cells (BFPSCs) were seeded on the scaffolds, MTT assay, alkaline phosphatase activity as an indicator of osteoconductivity, and cell adhesion were conducted in order to evaluate in vitro biological responses. All scaffolds highly supported cell adhesion, MTT assay indicated better cell viability in 0.5% VD-loaded GO containing scaffold, and the scaffold enriched with 2% VD-loaded GO performed the most ALP activity. The results demonstrated the potential of these scaffolds to induce bone regeneration.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Liberação Controlada de Fármacos , Durapatita/química , Gelatina/química , Grafite/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Vitamina D/administração & dosagem , Líquidos Corporais , Regeneração Óssea/efeitos dos fármacos , Adesão Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Difusão , Humanos , Técnicas In Vitro , Cinética , Modelos Teóricos , Osteogênese/efeitos dos fármacos , Porosidade , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/metabolismo , Estresse Mecânico , Sais de Tetrazólio/química , Tiazóis/química
16.
Int J Biol Macromol ; 165(Pt A): 1422-1430, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987067

RESUMO

Nowadays, nanotechnology contributes diminishing side effects rather than traditional therapeutic methods like chemotherapy. Thus, designing a biocompatible specific targeted nanocarrier with prolonged half-life and enhanced bio-availability using simultaneous cell imaging seems urgent. To meet this demand, 5-fluorouracil-chitosan­carbon quantum dot-aptamer (5-FU-CS-CQD-Apt) nanoparticle was successfully synthesized for specific targeted delivery of 5-FU anti-cancer drug used in breast cancer treatment and this was done by following facile water-in-oil (W/O) emulsification method. Physicochemical properties were characterized and high drug loading and entrapment efficiency were achieved. The average size and zeta potential of the nanoparticle were 122.7 nm and + 31.2 mV, respectively. According to the in-vitro drug release profile, 5-FU-CS-CQD-Apt released the drug in a controlled manner. MTT assay, flow cytometry, fluorescence microscopy, and gene expression results demonstrated that the blank nanoparticle was biocompatible, and 5-FU-CS-CQD-Apt could kill tumor cells efficiently. Bcl-2/Bax ratio was decreased after 5-FU-CS-CQD-Apt treatment in MCF-7 cells. It was concluded that 5-FU-CS-CQD-Apt could be used as a potential nanocarrier in breast cancer treatment.


Assuntos
Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Fluoruracila/química , Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Carbono/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Liberação Controlada de Fármacos , Feminino , Fluoruracila/farmacologia , Humanos , Células MCF-7 , Nanopartículas/química , Pontos Quânticos/química
17.
Environ Sci Pollut Res Int ; 27(34): 43202-43211, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32734546

RESUMO

In this work, graphite/gold nanoparticles (G/AuNPs) were synthesized through a facile chemical method, and its potential application for direct protein attachment for electrochemical detection of carbon monoxide (CO) was investigated. The preparation of G/AuNPs electrodes was optimized by synthesizing the nanoparticles in different concentration of HAuCl4.3H2O at various temperatures. The G/AuNPs electrode was subsequently modified by four types of mercaptopropionic acid, including 1-mercaptopropionic, 3-mercaptopropionic, 6-mercaptopropionic, and 11-mercaptopropionic acid, to achieve the best structure for protein attachment. Visible absorption and electrochemical studies showed that 3-mercaptopropionic acid possesses the best performance regarding the electrical conductivity between electrode and protein redox center. The cyclic voltammetry results revealed that the modified electrode has an appropriate performance for CO detection at very low concentrations while keeping a linear response. The limit of detection for the modified electrode was calculated to be about 0.2 ppb. Finally, the interactions of cytochrome C and carbon monoxides were simulated using molecular dynamics (MD), and the effect of protein conformation changes on the electrochemical signal was thoroughly examined. The simulation results suggested that the proposed electrochemical sensor has an acceptable performance for the detection of CO due to less fluctuation of amino acids near the protein chain in the presence of CO molecules.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Técnicas Eletroquímicas , Eletrodos , Ouro , Limite de Detecção
18.
J Cell Biochem ; 121(5-6): 3185-3196, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31886565

RESUMO

Tissue engineering is fast becoming a key approach in bone medicine studies. Designing the ideally desirable combination of stem cells and scaffolds are at the hurt of efforts for producing implantable bone substitutes. Clinical application of stem cells could be associated with serious limitations, and engineering scaffolds that are able to imitate the important features of extracellular matrix is a major area of challenges within the field. In this study, electrospun scaffolds of polyvinylidene fluoride (PVDF), PVDF-graphene oxide (GO), PVDF-polyvinyl alcohol (PVA) and PVDF-PVA-GO were fabricated to study the osteogenic differentiation potential of human induced pluripotent stem cells (iPSCs) while cultured on fabricated scaffolds. Scanning electron microscopy study, viability assay, relative gene expression analysis, immunocytochemistry, alkaline phosphates activity, and calcium content assays confirmed that the osteogenesis rate of hiPSCs cultured on PVDF-PVA-Go is significantly higher than other scaffolds. Here, we showed that the biocompatible, nontoxic, flexible, piezoelectric, highly porous and interconnected three-dimensional structure of electrospun PVDF-PVA-Go scaffold in combination with hiPSCs (as the stem cells with significant advantageous in comparison to other types) makes them a highly promising scaffold-stem cell system for bone remodeling medicine. There was no evidence for the superiority of PVDF-GO or PVDF-PVA scaffold for osteogenesis, compared to each other; however both of them showed better potentials as to PVDF scaffold.


Assuntos
Grafite/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Álcool de Polivinil/farmacologia , Polivinil/farmacologia , Adsorção , Materiais Biocompatíveis/química , Remodelação Óssea , Substitutos Ósseos , Cálcio/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Eletricidade , Perfilação da Expressão Gênica , Humanos , Microscopia Eletrônica de Varredura , Estresse Mecânico , Engenharia Tecidual/métodos , Alicerces Teciduais
19.
Mikrochim Acta ; 186(12): 787, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732807

RESUMO

An electrochemical aptasensor is described for the voltammetric determination of lipopolysaccharide (LPS) from Escherichia coli 055:B5. Aptamer chains were immobilized on the surface of a glassy carbon electrode (GCE) via reduced graphene oxide and gold nanoparticles (RGO/AuNPs). Fast Fourier transform infrared, X-ray diffraction and transmission electron microscopy were used to characterize the nanomaterials. Cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy were used to characterize the modified GCE. The results show that the modified electrode has a good selectivity for LPS over other biomolecules. The hexacyanoferrate redox system, typically operated at around 0.3 V (vs. Ag/AgCl) is used as an electrochemical probe. The detection limit is 30 fg·mL-1. To decrease the electrochemical potential for detection of LPS, Mg/carbon quantum dots were used as redox active media. They decrease the detection potentialto 0 V and the detection of limit (LOD) to 1 fg·mL-1. The electrode was successfully used to analyze serum of patients and healthy persons. Graphical abstractSchematic representation of the modification of reduced graphene oxide gold nanoparticles with aptamer chains to immobilize on the glassy carbon electrode surface for electrochemical detection of lipopolysaccharides.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Escherichia coli/química , Lipopolissacarídeos/sangue , Nanopartículas Metálicas/química , Sequência de Bases , Eletrodos , Ferrocianetos/química , Ouro/química , Grafite/química , Humanos , Limite de Detecção , Magnésio/química , Oxirredução , Pontos Quânticos/química
20.
Mater Sci Eng C Mater Biol Appl ; 103: 109860, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349463

RESUMO

This paper describes the design of stimuli-sensitive theranostic nanoparticles, composed of reduced graphene oxide (rGO) self-assembled on thermosensitive liposomes encapsulated doxorubicin (DOX) and carbon quantum dot (CQD) (CQD-DOX-rGO-Tlip). The rGO-Tlip particles have been observed to be flower-shaped objects. The thermoresponsive and theranostic potential of CQD-DOX-rGO-Tlips have been studied using differential scanning calorimetry (DSC), ultraviolet visible spectroscopy (UV-Vis), Raman spectroscopy and photoluminescent assays. The chemo-photothermal potential of rGO-Tlip on MD-MB-231 cells during NIR laser irradiation has been examined using MTT assay. Also, the ability of rGO-Tlip to be taken up by MD-MB-231 cells has been studied using confocal microscopy and flowcytometry. The results indicate that CQD-DOX-rGO-Tlips achieve a synergistic effect between photothermal therapy and chemotherapy for cancer treatment. Furthermore, online monitoring drug release is accomplished by studying the emission intensity of CQD while DOX released.


Assuntos
Doxorrubicina , Grafite , Hipertermia Induzida , Neoplasias/terapia , Fototerapia , Pontos Quânticos , Carbono/química , Carbono/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Grafite/química , Grafite/farmacologia , Humanos , Lipossomos , Neoplasias/metabolismo , Neoplasias/patologia , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...