Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 40(2): 579-591, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35194718

RESUMO

PURPOSE: The purpose of the present study was to investigate the dissolution profiles of cocrystals with cis-trans isomeric coformers. Previously, the carbamazepine (CBZ) cocrystals with even-carbon dicarboxylic acids showed higher supersaturation than those with odd-carbon ones, attributed to particle surface solution-mediated phase transformation (PS-SMPT) to CBZ dihydrate (CBZ DH). However, it has been unknown whether this odd-even pattern holds for cis-trans isomeric coformers. METHOD: CBZ cocrystals with maleic acid (MLE) and fumaric acid (FUM) (CBZ-FUM anhydrate (CBZ-FUM AH) and monohydrate (CBZ-FUM H2O)) were employed as model cocrystals. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone, and polyethylene glycol 6000 (PEG) were used as precipitation inhibitors. Dissolution tests were performed under a non-sink condition. Residual particles were analyzed by powder X-ray diffraction, differential scanning calorimetry, polarized light microscope, and scanning electron microscope. RESULTS: All cocrystals showed little supersaturation in the absence of a polymer. In 0.1% HPMC, CBZ-FUM AH showed significant supersaturation, whereas CBZ-MLE and CBZ-FUM H2O did not for the first two hours. HPMC reduced the initial dissolution rate of CBZ-MLE and CBZ-FUM H2O while inducing the highest supersaturation among the polymers after 96 h. The particle surface changed from a smooth plane to a striped pattern, but little or no CBZ DH was detected. CONCLUSION: The cocrystals with cis-trans isomeric coformers showed different dissolution profiles. HPMC increased the dissolution rate of CBZ-FUM AH by inhibiting PS-SMPT but reduced the dissolution rate of CBZ-MLE and CBZ-FUM H2O without inducing PS-SMPT. The striped pattern was suggested to be due to surface etching rather than PS-SMPT.


Assuntos
Carbamazepina , Polímeros , Solubilidade , Cristalização , Carbamazepina/química , Difração de Raios X , Derivados da Hipromelose/química , Varredura Diferencial de Calorimetria
2.
Mol Pharm ; 17(10): 3825-3836, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32870691

RESUMO

The purpose of the present study was to investigate the effect of the coformer difference on particle surface solution-mediated phase transformation (PS-SMPT) during cocrystal particle dissolution in aqueous media in the absence and presence of polymers. SMPT can occur either in the bulk phase or at the particle surface because drug molecules can be supersaturated at the dissolving cocrystal surface, as well as in the bulk phase. Previously, bulk phase SMPT has been primarily investigated in formulation development. However, little is known about the effects of coformers and polymers on PS-SMPT of cocrystals. In this study, six carbamazepine (CBZ) cocrystals were used as model cocrystals (malonic acid (MAL), succinic acid (SUC), glutaric acid (GLA), adipic acid (ADP), saccharin (SAC), and nicotinamide (NCT); nonsink dissolution tests were performed with or without a precipitation inhibitor (hydroxypropyl methylcellulose (HPMC)) at pH 6.5. The residual particles were analyzed by powder X-ray diffraction, differential scanning calorimetry, polarized light microscopy (PLM), and scanning electron microscopy. Real-time PLM was used to directly observe rapid PS-SMPT. In the absence of HPMC, supersaturation was not observed in the bulk phase for all cocrystals. All cocrystals rapidly transformed to CBZ dihydrate aggregates via PS-SMPT (mostly within 1 min). In contrast, in the presence of 0.1% HPMC, supersaturation was observed for CBZ-SUC, CBZ-ADP, CBZ-SAC, and CBZ-NCT but not for CBZ-MAL and CBZ-GLA. The cocrystals with lower solubility coformers tended to induce higher supersaturation in the bulk phase. The PS-SMPT of CBZ-SUC, CBZ-ADP, and CBZ-SAC was slowed down by HPMC. By suppressing PS-SMPT, the cocrystals exhibited its supersaturation potential, depending on the properties of each coformer. To take advantage of the supersaturation potential of cocrystals to improve oral drug absorption, it is important to suppress particle surface SMPT in addition to bulk phase SMPT.


Assuntos
Carbamazepina/química , Cristalização , Excipientes Farmacêuticos/química , Polímeros/química , Administração Oral , Varredura Diferencial de Calorimetria , Química Farmacêutica , Derivados da Hipromelose/química , Solubilidade , Propriedades de Superfície , Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...