Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 278: 118840, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973722

RESUMO

Engineered block polysaccharides is a relatively new class of biomacromolecules consisting of chemical assembly of separate block structures at the chain termini. In contrast to conventional, laterally substituted polysaccharide derivatives, the block arrangement allows for much higher preservation of inherent chain properties such as biodegradability and stimuli-responsive self-assembly, while at the same time inducing new macromolecular properties. Abundant, carbon neutral, and even recalcitrant biomass is an excellent source of blocks, opening for numerous new uses of biomass for a wide range of novel biomaterials. Among a limited range of methodologies available for block conjugation, bifunctional linkers allowing for oxyamine and hydrazide 'click' reactions have recently proven useful additions to the repertoire. This article focuses the chemistry and kinetics of these reactions. It also presents some new data with the aim to provide useful protocols and methods for general use towards new block polysaccharides.


Assuntos
Aminas/farmacologia , Hidrazonas/farmacologia , Polissacarídeos/antagonistas & inibidores , Aminas/química , Configuração de Carboidratos , Química Click , Hidrazonas/química
2.
Sci Rep ; 9(1): 9325, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249333

RESUMO

Controlling the rate of release of molecules from a hydrogel is of high interest for various drug delivery systems and medical devices. A strategy to alter the release profiles of soluble and poorly soluble active ingredients from hydrogels can be to combine the hydrogel forming ability of alginate with the inclusion forming ability of cyclodextrins (CyD). Here, ß-CyD was grafted to alginate in a three-step synthesis using periodate oxidation, reductive amination and copper(I)-catalyzed azide-alkyne cycloaddition. A grafting degree of 4.7% mol ß-CyD/mol sugar residues was obtained. The grafting degree was controlled by varying the reaction parameters where the amount of linker used in reductive amination was especially influential. Ca-alginate gel beads grafted with ß-CyD showed increased uptake of the model molecule methyl orange. Release experiments showed that the grafted material had a prolonged release of methyl orange and an increased total amount of released methyl orange. These results show that the ß-CyD grafted alginate is still able to form a hydrogel while the grafted cyclodextrins retain their ability to form inclusion complex with methyl orange. Further testing should be done with this system to investigate capability for drug delivery applications.


Assuntos
Alginatos/química , Ciclodextrinas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Hidrogéis/química , Compostos Azo/química , Química Click , Peso Molecular , Solubilidade
3.
Gels ; 5(2)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010196

RESUMO

In this work, the mechanical properties and stability of alginate hydrogels containing functionalized alginates (peptide and ß-cyclodextrin) were studied. There is an increasing interest in the modification of alginates to add functions such as cell attachment and increased solubility of hydrophobic drugs, for better performance in tissue engineering and drug release, respectively. Functionalization was achieved in this study via periodate oxidation followed by reductive amination, previously shown to give a high and controllable degree of substitution. Young's modulus and the stress at rupture of the hydrogels were in general lowered when exchanging native alginate with the modified alginate. Still, the gel strength could be adjusted by the fraction of modified alginate in the mixed hydrogels as well as the degree of oxidation. No notable difference in deformation at rupture was observed while syneresis was influenced by the degree of oxidation and possibly by the nature and amount of the grafted molecules. The mixed hydrogels were less stable than hydrogels with only native alginate, and modified alginate was released from the hydrogels. Furthermore, the hydrogels in general rather disintegrated than swelled upon saline treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...