Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 5: 22, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19099552

RESUMO

BACKGROUND: The ability of nanoparticles to cross the lung-blood barrier suggests that they may translocate to blood and to targets distant from their portal of entry. Nevertheless, nanotoxicity in organs has received little attention. The purpose of this study was to evaluate nanotoxicity in renal cells using in vitro models. Various carbon black (CB) (FW2-13 nm, Printex60-21 nm and LB101-95 nm) and titanium dioxide (TiO2-15 and TiO2-50 nm) nanoparticles were characterized on size by electron microscopy. We evaluated theirs effects on glomerular mesangial (IP15) and epithelial proximal tubular (LLC-PK1) renal cells, using light microscopy, WST-1 assay, immunofluorescence labeling and DCFH-DA for reactive oxygen species (ROS) assay. RESULTS: Nanoparticles induced a variety of cell responses. On both IP15 and LLC-PK1 cells, the smallest FW2 NP was found to be the most cytotoxic with classic dose-behavior. For the other NPs tested, different cytotoxic profiles were found, with LLC-PK1 cells being more sensitive than IP15 cells. Exposure to FW2 NPs, evidenced in our experiments as the most cytotoxic particle type, significantly enhanced production of ROS in both IP15 and LLC-PK1 cells. Immunofluorescence microscopy using latex beads indicated that depending on their size, the cells internalized particles, which accumulated in the cell cytoplasm. Additionally using transmission electronic microscope micrographs show nanoparticles inside the cells and trapped in vesicles. CONCLUSION: The present data constitute the first step towards determining in vitro dose effect of manufactured CB and TiO2 NPs in renal cells. Cytotoxicological assays using epithelial tubular and glomerular mesangial cell lines rapidly provide information and demonstrated that NP materials exhibit varying degrees of cytotoxicity. It seems clear that in vitro cellular systems will need to be further developed, standardized and validated (relative to in vivo effects) in order to provide useful screening data about the relative toxicity of nanoparticles.

2.
Chem Res Toxicol ; 20(10): 1426-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17883261

RESUMO

Particulate matter (PM) from atmospheric pollution can easily deposit in the lungs and induce recruitment of inflammatory cells, a source of inflammatory cytokines, oxidants, and matrix metalloproteases (MMPs), which are important players in lung structural homeostasis. In many large cities, the subway system is a potent source of PM emission, but little is known about the biological effects of PM from this source. We performed a comprehensive study to evaluate the biological effects of PM sampled at two sites (RER and Metro) in the Paris subway system. Murine macrophages (RAW 264.7) and C57Bl/6 mice, respectively, were exposed to 0.01-10 microg/cm2 and 5-100 microg/mouse subway PM or reference materials [carbon black (CB), titanium dioxide (TiO2), or diesel exhaust particles (DEPs)]. We analyzed cell viability, production of cellular and lung proinflammatory cytokines [tumor necrosis factor alpha (TNFalpha), macrophage inflammatory protein (MIP-2), KC (the murin analog of interleukin-8), and granulocyte macrophage-colony stimulating factor (GM-CSF)], and mRNA or protein expression of MMP-2, -9, and -12 and heme oxygenase-1 (HO-1). Deferoxamine and polymixin B were used to evaluate the roles of iron and endotoxin, respectively. Noncytotoxic concentrations of subway PM (but not CB, TiO2, or DEPs) induced a time- and dose-dependent increase in TNFalpha and MIP-2 production by RAW 264.7 cells, in a manner involving, at least in part, PM iron content (34% inhibition of TNF production 8 h after stimulation of RAW 264.7 cells with 10 microg/cm2 RER particles pretreated with deferoxamine). Similar increased cytokine production was transiently observed in vivo in mice and was accompanied by an increased neutrophil cellularity of bronchoalveolar lavage (84.83+/-0.98% of polymorphonuclear neutrophils for RER-treated mice after 24 h vs 7.33+/-0.99% for vehicle-treated animals). Subway PM induced an increased expression of MMP-12 and HO-1 both in vitro and in vivo. PM from the Paris subway system has transient biological effects. Further studies are needed to better understand the pathophysiological implications of these findings.


Assuntos
Poluentes Atmosféricos/toxicidade , Colagenases/metabolismo , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Material Particulado/toxicidade , Ferrovias , Administração por Inalação , Animais , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cidades , Colagenases/genética , Relação Dose-Resposta a Droga , Monitoramento Ambiental/métodos , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Exposição por Inalação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...