Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 941, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200050

RESUMO

We present a Hamiltonian model describing two pairs of mechanical and optical modes under standard optomechanical interaction. The vibrational modes are mechanically isolated from each other and the optical modes couple evanescently. We recover the ranges for variables of interest, such as mechanical and optical resonant frequencies and naked coupling strengths, using a finite element model for a standard experimental realization. We show that the quantum model, under this parameter range and external optical driving, may be approximated into parametric interaction models for all involved modes. As an example, we study the effect of detuning in the optical resonant frequencies modes and optical driving resolved to mechanical sidebands and show an optical beam splitter with interaction strength dressed by the mechanical excitation number, a mechanical bidirectional coupler, and a two-mode mechanical squeezer where the optical state mediates the interaction strength between the mechanical modes.

2.
Sci Rep ; 13(1): 8312, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221188

RESUMO

We present a Lie algebraic approach to a Hamiltonian class covering driven, parametric quantum harmonic oscillators where the parameter set-mass, frequency, driving strength, and parametric pumping-is time-dependent. Our unitary-transformation-based approach provides a solution to our general quadratic time-dependent quantum harmonic model. As an example, we show an analytic solution to the periodically driven quantum harmonic oscillator without the rotating wave approximation; it works for any given detuning and coupling strength regime. For the sake of validation, we provide an analytic solution to the historical Caldirola-Kanai quantum harmonic oscillator and show that there exists a unitary transformation within our framework that takes a generalized version of it onto the Paul trap Hamiltonian. In addition, we show how our approach provides the dynamics of generalized models whose Schrödinger equation becomes numerically unstable in the laboratory frame.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...