Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32190705

RESUMO

Activation times (AT) describe the sequence of cardiac depolarization and represent one of the most important parameters for analysis of cardiac electrical activity. However, estimation of ATs can be challenging due to multiple sources of noise such as fractionation or baseline wander. If ATs are estimated from signals reconstructed using electrocardiographic imaging (ECGI), additional problems can arise from over-smoothing or due to ambiguities in the inverse problem. Often, resulting AT maps show falsely homogeneous regions or artificial lines of block. As ATs are not only important clinically, but are also commonly used for evaluation of ECGI methods, it is important to understand where these errors come from. We present results from a community effort to compare methods for AT estimation on a common dataset of simulated ventricular pacings. ECGI reconstructions were performed using three different surface source models: transmembrane voltages, epi-endo potentials and pericardial potentials, all using 2nd-order Tikhonov and 6 different regularization parameters. ATs were then estimated by the community participants and compared to the ground truth. While the pacing site had the largest effect on AT correlation coefficients (CC larger for lateral than for septal pacings), there were also differences between methods and source models that were poorly reflected in CCs. Results indicate that artificial lines of block are most severe for purely temporal methods. Compared to the other source models, ATs estimated from transmembrane voltages are more precise and less prone to artifacts.

2.
Med Biol Eng Comput ; 57(5): 967-993, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30506117

RESUMO

In the inverse electrocardiography (ECG) problem, the goal is to reconstruct the heart's electrical activity from multichannel body surface potentials and a mathematical model of the torso. Over the years, researchers have employed various approaches to solve this ill-posed problem including regularization, optimization, and statistical estimation. It is still a topic of interest especially for researchers and clinicians whose goal is to adopt this technique in clinical applications. Among the wide range of mathematical tools available in the fields of operational research, inverse problems, optimization, and parameter estimation, spline-based techniques have been applied to inverse problems in several areas. If proper spline bases are chosen, the complexity of the problem can be significantly reduced while increasing estimation accuracy. However, there are few studies within the context of the inverse ECG problem that take advantage of this property of the spline-based approaches. In this paper, we evaluate the performance of Multivariate Adaptive Regression Splines (MARS)-based method for the solution of the inverse ECG problem using two different collections of simulated data. The results show that the MARS-based method improves the inverse ECG solutions and is "robust" to modeling errors, especially in terms of localizing the arrhythmia sources. Graphical Abstract Multivariate adaptive non-parametric model for inverse ECG problem.


Assuntos
Algoritmos , Eletrocardiografia/métodos , Modelos Cardiovasculares , Pericárdio/fisiologia , Animais , Cães , Coração/anatomia & histologia , Humanos , Análise Multivariada , Tamanho do Órgão , Pericárdio/diagnóstico por imagem , Análise de Regressão , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...