Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 12(1): 295, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186055

RESUMO

BACKGROUND: Baseline information that is essential for determining the areas to target with larval control includes estimates of vector diversity and larval habitat preferences. Due to a lack of such information in Baringo County, Kenya, this study assessed species diversity and larval habitat preference of potential mosquito vectors of Rift Valley fever (RVF) and malaria. METHODS: Mosquito larvae were sampled from nine types of larval habitats and were identified morphologically. Species diversity was estimated by the Shannon's diversity index while larval habitat preference by RVF and malaria vectors was determined by ANOVA. RESULTS: A total of 7724 immature mosquitoes comprising 17 species belonging to four genera, namely Anopheles, Culex, Aedes and Mansonia, were identified. Among the 17 species, three Anopheles species are responsible for malaria transmission: An. gambiae (s.l.), An. funestus (s.l.) and An. pharoensis. Rift Valley fever vectors included Mansonia spp. and Culex spp. The highest Shannon's diversity index was observed during the cold dry season (H = 2.487) and in the highland zone (H = 2.539) while the lowest diversity was recorded during the long rain season (H = 2.354) and in the riverine zone (H = 2.085). Ditches had the highest mean number of Anopheles larvae (16.6 larvae per sample) followed by swamp (12.4) and seasonal riverbed (10.7). Water pit and water pan had low mean numbers of Anopheles larvae (1.4 and 1.8, respectively) but relatively high mean numbers of culicines (16.9 and 13.7, respectively). Concrete tank was the least sampled type of habitat but had highest mean number of culicine larvae (333.7 l) followed distantly by water spring (38.9) and swamp (23.5). Overall, larval habitats were significantly different in terms of larval density (F(8,334) = 2.090, P = 0.036). CONCLUSIONS: To our knowledge, the present study reports culicine larval species diversity in Baringo for the first time and the most preferred habitats were concrete tanks, water springs and swamps. Habitats preferred by Anopheles were mainly riverbed pools, ditches and swamps. Environmental management targeting the habitats most preferred by potential vectors can be part of integrated vector control in Baringo, especially during dry seasons.


Assuntos
Biodiversidade , Ecossistema , Mosquitos Vetores/classificação , Aedes/classificação , Aedes/parasitologia , Aedes/virologia , Animais , Anopheles/classificação , Anopheles/parasitologia , Anopheles/virologia , Culex/classificação , Culex/parasitologia , Culex/virologia , Quênia , Larva , Mosquitos Vetores/parasitologia , Mosquitos Vetores/virologia , Plasmodium , Vírus da Febre do Vale do Rift , Estações do Ano , Áreas Alagadas
2.
Parasit Vectors ; 11(1): 577, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400976

RESUMO

BACKGROUND: Most malaria vectors belong to species complexes. Sibling species often exhibit divergent behaviors dictating the measures that can be deployed effectively in their control. Despite the importance of the Anopheles funestus complex in malaria transmission in sub-Saharan Africa, sibling species have rarely been identified in the past and their vectoring potential remains understudied. METHODS: We analyzed 1149 wild-caught An. funestus (senso lato) specimens from 21 sites in Kenya, covering the major malaria endemic areas including western, central and coastal areas. Indoor and outdoor collection tools were used targeting host-seeking and resting mosquitoes. The identity of sibling species, infection with malaria Plasmodium parasites, and the host blood meal sources of engorged specimens were analyzed using PCR-based and sequencing methods. RESULTS: The most abundant sibling species collected in all study sites were Anopheles funestus (59.8%) and Anopheles rivulorum (32.4%) among the 1062 successfully amplified specimens of the An. funestus complex. Proportionally, An. funestus dominated in indoor collections whilst An. rivulorum dominated in outdoor collections. Other species identified were Anopheles leesoni (4.6%), Anopheles parensis (2.4%), Anopheles vaneedeni (0.1%) and for the first time in Kenya, Anopheles longipalpis C (0.7%). Anopheles funestus had an overall Plasmodium infection rate of 9.7% (62/636), predominantly Plasmodium falciparum (59), with two infected with Plasmodium ovale and one with Plasmodium malariae. There was no difference in the infection rate between indoor and outdoor collections. Out of 344 An. rivulorum, only one carried P. falciparum. We also detected P. falciparum infection in two non-blood-fed An. longipalpis C (2/7) which is the first record for this species in Kenya. The mean human blood indices for An. funestus and An. rivulorum were 68% (93/136) and 64% (45/70), respectively, with feeding tendencies on a broad host range including humans and domestic animals such as cow, goat, sheep, chicken and pig. CONCLUSIONS: Our findings underscore the importance of active surveillance through application of molecular approaches to unravel novel parasite-vector associations possibly contributed by cryptic species with important implications for effective malaria control and elimination.


Assuntos
Anopheles/parasitologia , Comportamento Alimentar , Malária Falciparum/transmissão , Malária/transmissão , Mosquitos Vetores/parasitologia , Animais , Anopheles/genética , Anopheles/fisiologia , Vetores de Doenças , Feminino , Quênia/epidemiologia , Malária/epidemiologia , Malária Falciparum/epidemiologia , Mosquitos Vetores/genética , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase
3.
PLoS One ; 13(6): e0198970, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889888

RESUMO

Malaria, a major cause of morbidity and mortality, is the most prevalent vector borne disease in Baringo County; a region which has varied house designs in arid and semi-arid areas. This study investigated the association between house structures and indoor-malaria vector abundance in Baringo County. The density of malaria vectors in houses with open eaves was higher than that for houses with closed eaves. Grass thatched roof houses had higher density of malaria vectors than corrugated iron sheet roofs. Similarly, mud walled houses had higher vector density than other wall types. Houses in the riverine zone were significantly associated with malaria vector abundance (p<0.000) possibly due to more varied house structures. In Kamnarok village within riverine zone, a house made of grass thatched roof and mud wall but raised on stilts with domestic animals (sheep/goats) kept at the lower level had lower mosquito density (5.8 per collection) than ordinary houses made of same materials but at ground level (30.5 mosquitoes per collection), suggestive of a change in behavior of mosquito feeding and resting. House modifications such as screening of eaves, improvement of construction material and building stilted houses can be incorporated in the integrated vector management (IVM) strategy to complement insecticide treated bed nets and indoor residual spray to reduce indoor malaria vector density.


Assuntos
Habitação , Malária/prevenção & controle , Animais , Anopheles/fisiologia , Humanos , Quênia/epidemiologia , Gado/parasitologia , Malária/epidemiologia , Mosquitos Vetores , Ovinos
4.
Infect Ecol Epidemiol ; 6: 32322, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27863533

RESUMO

BACKGROUND: Rift Valley fever (RVF) is a vector-borne zoonotic disease that has an impact on human health and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift Valley fever virus (RVFV). OBJECTIVES: To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya, with an aim of developing a risk map for spatial prediction of RVF outbreaks. METHODOLOGY: The study used data on vector presence and ecological niche modelling (MaxEnt) algorithm to predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes and larvae in the study area. We used present (2000) and future (2050) Bioclim climate databases to model the vector distribution. RESULTS: Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus, Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically significant. CONCLUSION: Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed the highest predictive potential for the four species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...