Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 895: 165088, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356774

RESUMO

The intersection of fire, land use transformations, and climate change is putting Mediterranean climate-type ecosystems at risk of soil degradation and loss of ecosystem services. Ondik et al. (2022b) showed that in a Mediterranean dry sclerophyll woodland of South Australia, high severity fire and clearing and grazing practices impacted both physicochemical and biological soil quality indicators. Building upon the work of Ondik et al. (2022b) this study aims to 1) identify soil physicochemical properties impacted by fire and land management that are indirect drivers of changes to soil microbial community composition and 2) determine whether the observed changes to soil microbial community composition affect soil microbial functions. Via a redundancy analysis, we identified fire and management-induced changes to pH, soil water repellency, nutrient stoichiometry, and total nutrient content as significant drivers of the composition of soil microbial communities. We then measured basal respiration, substrate induced respiration, and the carbon mineralisation quotient, and calculated functional trait distributions among microbial communities by linking 16S and 18S rRNA sequences to respiration modes and functional guilds, respectively. We found that fire reduced soil microbial respiration and the relative abundance (RA) of microbial symbionts, anaerobic bacteria, and microaerophilic bacteria, while increasing the RA of aerobic bacteria. Furthermore, management increased the RA of post-fire ectomycorrhizal fungi and may have reduced pathogenic load, microbial efficiency, and wood saprotrophs, while increasing litter, soil, and other saprotrophic species that are adapted to grasslands. This study shows that, through changes to microbial community composition, high severity wildfire and land management affected soil respiration rates, bacterial modes of respiration, prevalence of symbiotic bacteria and fungi, and microbial substrate preference. Having identified the main physicochemical drivers of changes to microbial community composition, we provide valuable insights into how fire and land management can impact soils in Mediterranean woodland.


Assuntos
Incêndios , Microbiota , Ecossistema , Solo/química , Microbiologia do Solo , Florestas , Bactérias/metabolismo
2.
J Environ Manage ; 324: 116245, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36352725

RESUMO

Fire directly impacts soil properties responsible for soil function and can result in soil degradation. Across the globe, climate change-induced droughts and elevated temperatures are exacerbating fire regime severity, breadth, and frequency, thus posing a threat to soil function and dependent ecosystem services. In Australia, the 2019-2020 fire season consumed nearly 50% of Kangaroo Island, South Australia, burning both dry sclerophyll woodland and adjacent historically cleared and grazed pastureland. Due to exacerbated fire regime elements, e.g., intensity and area affected, and interactions with historical land use, post-fire recovery of soil function was uncertain. This study assessed the impacts of a) the 2019-2020 fire event in Western River, Kangaroo Island on dry sclerophyll woodland and b) the interaction between this fire event and historical clearing and grazing on post-fire function of the soil. To do so, the following physicochemical and biological soil properties were analysed: labile active carbon, total carbon, total nitrogen, carbon to nitrogen ratio (C/N), pH, electrical conductivity, soil water repellency, aggregate stability, microbial community composition, and microbial diversity. Our results showed that the fire was of high severity, causing a reduction in nutrient content, an extreme rise in pH, and significant modifications to fungal communities in burnt compared to unburnt dry sclerophyll woodland. Furthermore, clearing and grazing raised post-fire soil nutrient levels and soil microbial diversity but reduced soil C/N and the abundance of ectomycorrhizal fungi in burnt pastureland compared to burnt woodland soils. This study highlights the role of management and fire severity in post-fire outcomes and emphasizes the need for comprehensive soil function assessments to evaluate the impacts of disturbance on soil. Taking direct measure of soil properties, as done here, will improve future assessments of fire season impacts and post-fire recovery in fire-prone landscapes.


Assuntos
Incêndios , Microbiota , Solo/química , Ecossistema , Florestas , Nitrogênio/análise , Carbono
3.
RNA Biol ; 17(1): 62-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31559909

RESUMO

Neuronal microexons represent the most highly conserved class of alternative splicing events and their timed expression shapes neuronal biology, including neuronal commitment and differentiation. The six-nt microexon 34' is included in the neuronal form of TAF1 mRNA, which encodes the largest subunit of the basal transcription factor TFIID. In this study, we investigate the tissue distribution of TAF1-34' mRNA and protein and the mechanism responsible for its neuronal-specific splicing. Using isoform-specific RNA probes and antibodies, we observe that canonical TAF1 and TAF1-34' have different distributions in the brain, which distinguish proliferating from post-mitotic neurons. Knockdown and ectopic expression experiments demonstrate that the neuronal-specific splicing factor SRRM4/nSR100 promotes the inclusion of microexon 34' into TAF1 mRNA, through the recognition of UGC sequences in the poly-pyrimidine tract upstream of the regulated microexon. These results show that SRRM4 regulates temporal and spatial expression of alternative TAF1 mRNAs to generate a neuronal-specific TFIID complex.


Assuntos
Éxons , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Splicing de RNA , RNA Mensageiro/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Animais , Encéfalo/metabolismo , Diferenciação Celular , Imuno-Histoquímica , Camundongos , Neurogênese/genética , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...