Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trauma ; 69(6): 1457-66, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21150524

RESUMO

BACKGROUND: Keloid scar is a fibroproliferative disorder characterized by increased deposition of extracellular matrix components. Hepatocyte growth factor (HGF), also known as the "scatter factor," and its receptor, a product of the Met oncogene, play multiple roles in regulating cell behavior. However, the role of this system in pathogenic fibrosis is still unclear. Our aim was to investigate and to clarify the role of HGF and its receptor c-Met in pathogenesis of keloid scars. METHODS: This study investigated the expression profile of HGF and c-Met in keloid and normal skin tissue. In addition, the role of normal and keloid keratinocytes in modulating the expression of fibroblast HGF (epithelial-mesenchymal interactions) was examined using a two-chamber serum-free coculture model. The effect of serum stimulation on fibroblast expression of HGF and c-Met was also studied. RESULTS: Increased levels of HGF and c-Met were observed in tissue extracts obtained from keloid tissue. Increased levels of HGF and c-Met localization were observed in the basal epidermis and in the dermis of keloid tissue compared with normal skin. Serum stimulation seemed to upregulate the expression of both HGF and c-Met in fibroblasts. Finally, coculture of keloid keratinocytes with keloid fibroblasts upregulated levels of both HGF and c-Met in keratinocyte cell lysates and conditioned media obtained from fibroblast culture. CONCLUSIONS: These findings emphasize the importance of the HGF/c-Met system in keloid biology and pathogenesis and suggest a possible target for therapeutic intervention in the prevention and treatment of keloids.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Queloide/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Análise de Variância , Western Blotting , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Queloide/patologia , Queratinócitos/metabolismo , Regulação para Cima
2.
J Trauma ; 68(4): 999-1008, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20386290

RESUMO

BACKGROUND: Growth factors and cytokines involved in the wound healing process seem to be immobilized at the cell surface and extracellular matrix via binding with proteoglycans, making them important modulators of cell dynamics. Our aim was to investigate the expression of two proteoglycans, namely syndecan-2 and decorin, and to elucidate their role in the pathogenesis of an aberrant wound healing process leading to keloid scar. METHODS: Intrinsic expression of syndecan-2, fibroblast growth factor (FGF)-2, and decorin in keloid tissue was investigated using Western blotting and immunohistochemistry. Normal and keloid fibroblasts were treated with serum to see the effects of serum growth factors on the expression of syndecan-2 and decorin. The role of epithelial-mesenchymal interactions in modulating syndecan-2, FGF-2, and decorin expression was investigated using an established two-chamber serum-free coculture model. Finally, the antifibrotic effect of decorin was investigated by studying its effect on the expression of extracellular matrix components. RESULTS: Syndecan-2 and FGF-2 were upregulated in keloid tissue; decorin was downregulated. Normal and keloid fibroblasts treated with serum led to increase in syndecan-2 and decrease in decorin expression. Under coculture conditions, syndecan-2 was shed in the conditioned media. FGF-2 was also upregulated under coculture conditions and, when added to fibroblast monocultures, increased shedding of syndecan-2. Decorin levels were upregulated under coculture conditions only in normal cocultures. Decorin was also able to decrease extracellular matrix proteins, highlighting its importance as an antifibrotic agent. CONCLUSION: Syndecan-2 and FGF-2 are not only overexpressed in keloid tissues but may interact with each other resulting in the shedding of syndecan-2, which in turn might activate a whole cascade of events responsible for a keloidic phenotype. In addition, decorin had an antifibrotic effect and could well be used as a potential therapeutic agent for keloids.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Queloide/metabolismo , Proteoglicanas/metabolismo , Sindecana-2/metabolismo , Análise de Variância , Western Blotting , Técnicas de Cocultura , Decorina , Regulação para Baixo , Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Técnicas Imunoenzimáticas , Queratinócitos/metabolismo , Fenótipo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...