Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423144

RESUMO

The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.


Assuntos
Biocombustíveis , Microalgas , Animais , Fotobiorreatores , Biomassa , Estágios do Ciclo de Vida
2.
Energy (Oxf) ; 273: 127221, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942281

RESUMO

The ongoing global pandemic of COVID-19 has devastatingly influenced the environment, society, and economy around the world. Numerous medical resources are used to inhibit the infectious transmission of the virus, resulting in massive medical waste. This study proposes a sustainable and environment-friendly method to convert hazardous medical waste into valuable fuel products through pyrolysis. Medical protective clothing (MPC), a typical medical waste from COVID-19, was utilized for co-pyrolysis with oil palm wastes (OPWs). The utilization of MPC improved the bio-oil properties in OPWs pyrolysis. The addition of catalysts further ameliorated the bio-oil quality. HZSM-5 was more effective in producing hydrocarbons in bio-oil, and the relevant reaction pathway was proposed. Meanwhile, a project was simulated to co-produce bio-oil and electricity from the co-pyrolysis of OPWs and MPC from application perspectives. The techno-economic analysis indicated that the project was economically feasible, and the payback period was 6.30-8.75 years. Moreover, it was also environmentally benign as its global warming potential varied from -211.13 to -90.76 kg CO2-eq/t. Therefore, converting MPC and OPWs into biofuel and electricity through co-pyrolysis is a green, economic, and sustainable method that can decrease waste, produce valuable fuel products, and achieve remarkable economic and environmental benefits.

3.
J Biotechnol ; 360: 23-36, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36272575

RESUMO

Biofuels from microalgae have promising potential for a sustainable bioeconomy. Algal strains' oil content and biomass yield are the most influential cost drivers in the fourth generation biofuel (FGB) production. Genetic modification is the key to improving oil accumulation and biomass yield, consequently developing the bioeconomy. This paper discusses current practices, new insights, and emerging trends in genetic modification and their bioeconomic impact on FGB production. It was demonstrated that enhancing the oil and biomass yield could significantly improve the probability of economic success and the net present value of the FGB production process. The techno-economic and socioeconomic burden of using genetically modified (GM) strains and the preventive control strategies on the bioeconomy of FGB production is reviewed. It is shown that the fully lined open raceway pond could cost up to 25% more than unlined ponds. The cost of a plastic hoop air-supported greenhouse covering cultivation ponds is estimated to be US 60,000$ /ha. The competitiveness and profitability of large-scale cultivation of GM biomass are significantly locked to techno-economic and socioeconomic drivers. Nonetheless, it necessitates further research and careful long-term follow-up studies to understand the mechanism that affects these parameters the most.


Assuntos
Biocombustíveis
4.
Chemosphere ; 302: 134750, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35504468

RESUMO

Increasing water pollution is a severe problem in densely industrialized countries. Nanomaterials provide strong potentials for the efficient elimination of organic pollutants due to their beneficial properties. Advancement in water purification is required to more efficiently remove the emerging organic contaminants, especially in pharmaceuticals wastes such as acetophenone, which shows high solubility in industrial wastewaters. Bismuth ferrite-based nanostructures were fabricated using a novel double solvent sol-gel method. The phase purity and crystallinity of bismuth ferrite were confirmed using XRD and further endorsed by TEM analysis. The SEM and XPS were used to study the particle sizes and presence of co-dopants on the Bi and Fe-sites of bismuth ferrite. After co-doping, the band-gap engineering of pure bismuth ferrites was accomplished by reducing it from 2.06 eV to 1.45 eV, likely attributing to the creation of shallow traps for the incoming photo-generated charge carriers. In particular, the Bi0.90Gd0.10Fe0.95Sn0.05 and Bi0.95Sm0.05Fe0.75Mn0.25 successfully eliminated up to 98% of acetophenone from polluted water in 3 h by irradiation of visible-light. These results reveal the suitability of the co-doped bismuth ferrites photocatalysts for the practical removal of pharmaceutical contaminants in hazardous industrial wastewater. The photodegradation of acetophenone by bismuth ferrite nanostructures with potentially long-lasting reusability demonstrate its potential as an advanced photocatalyst for wastewater treatment.


Assuntos
Bismuto , Nanoestruturas , Acetofenonas , Bismuto/química , Catálise , Compostos Férricos , Resíduos Industriais , Luz , Nanoestruturas/química , Águas Residuárias , Água
5.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215577

RESUMO

Petroleum-based plastics are associated with environmental pollution problems owing to their non-biodegradable and toxic properties. In this context, renewable and biodegradable bioplastics possess great potential to replace petroleum-based plastics in mitigating these environmental issues. Fabrication of bioplastic films involves a delicate mixture of the film-forming agent, plasticizer and suitable solvent. The role of the plasticizer is to improve film flexibility, whereas the filler serves as a reinforcement medium. In recent years, much research attention has been shifted toward devising diverse methods for enhancing the performance of bioplastics, particularly in the utilization of environmentally benign nanoparticles to displace the conventional hazardous chemicals. Along this line, this paper presents the emergence of nanofillers and plasticizers utilized in bioplastic fabrication with a focus on starch-based bioplastics. This review paper not only highlights the influencing factors that affect the optical, mechanical and barrier properties of bioplastics, but also revolves around the proposed mechanism of starch-based bioplastic formation, which has rarely been reviewed in the current literature. To complete the review, prospects and challenges in bioplastic fabrication are also highlighted in order to align with the concept of the circular bioplastic economy and the United Nations' Sustainable Development Goals.

6.
Polymers (Basel) ; 14(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054685

RESUMO

Bioplastic has been perceived as a promising candidate to replace petroleum-based plastics due to its environment-friendly and biodegradable characteristics. This study presents the chitosan reinforced starch-based bioplastic film prepared by the solution casting and evaporation method. The effects of processing parameters, i.e., starch concentration, glycerol loading, process temperature and chitosan loading on mechanical properties were examined. Optimum tensile strength of 5.19 MPa and elongation at break of 44.6% were obtained under the combined reaction conditions of 5 wt.% starch concentration, 40 wt.% glycerol loading, 20 wt.% chitosan loading and at a process temperature of 70 °C. From the artificial neural network (ANN) modeling, the coefficient of determination (R2) for tensile strength and elongation at break were found to be 0.9955 and 0.9859, respectively, which proved the model had good fit with the experimental data. Interaction and miscibility between starch and chitosan were proven through the peaks shifting to a lower wavenumber in FTIR and a reduction of crystallinity in XRD. TGA results suggested the chitosan-reinforced starch-based bioplastic possessed reasonable thermal stability under 290 °C. Enhancement in water resistance of chitosan-incorporated starch-based bioplastic film was evidenced with a water uptake of 251% as compared to a 302% registered by the pure starch-based bioplastic film. In addition, the fact that the chitosan-reinforced starch-based bioplastic film degraded to 52.1% of its initial weight after 28 days suggests it is a more sustainable alternative than the petroleum-based plastics.

7.
Environ Sci Pollut Res Int ; 29(34): 51143-51152, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35075565

RESUMO

Non-edible Ceiba oil has the potential to be a sustainable biofuel resource in tropical countries that can replace a portion of today's fossil fuels. Catalytic deoxygenation of the Ceiba oil (high O/C ratio) was conducted to produce hydrocarbon biofuel (high H/C ratio) over NiO-CaO5/SiO2-Al2O3 catalyst with aims of high diesel selectivity and catalyst reusability. In the present study, response surface methodology (RSM) technique with Box-Behnken experimental designs (BBD) was used to evaluate and optimize liquid hydrocarbon yield by considering the following deoxygenation parameters: catalyst loading (1-9 wt. %), reaction temperature (300-380 °C) and reaction time (30-180 min). According to the RSM results, the maximum yield for liquid hydrocarbon n-(C8-C20) was found to be 77% at 340 °C within 105 min and 5 wt. % catalyst loading. In addition, the deoxygenation model showed that the catalyst loading-reaction time interaction has a major impact on the deoxygenation activity. Based on the product analysis, oxygenated species from Ceiba oil were successfully removed in the form of CO2/CO via decarboxylation/decarbonylation (deCOx) pathways. The NiO-CaO5/SiO2-Al2O3 catalyst rendered stable reusability for five consecutive runs with liquid hydrocarbon yield within the range of 66-75% with n-(C15 + C17) selectivity of 64-72%. Despite this, coke deposition was observed after several times of catalyst usage, which is due to the high deoxygenation temperature (> 300 °C) that resulted in unfavourable polymerization side reaction.


Assuntos
Biocombustíveis , Ceiba , Catálise , Hidrocarbonetos , Dióxido de Silício
8.
Chemosphere ; 286(Pt 1): 131587, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303047

RESUMO

Alcohols could be the biggest factor for the improvement of world biofuel economy in the present century due to their excellent properties compared to petroleum products. The primary concerns of sustainable alcohol production for meeting the growing energy demand owing to the selection of viable feedstock and this might enhance the opportunities for developing numerous advanced techniques. In this review, the valorization of alcohol production from several production routes has been exposed by covering the traditional routes to the present state of the art technologies. Even though the fossil fuel conversion could be dominant method for methanol production, many recent innovations like photo electrochemical synthesis and electrolysis methods might play vital role in production of renewable methanol in future. There have been several production routes for production of ethanol and among which the fermentation of lignocellulose biomass would be the ultimate choice for large scale shoot up. The greenhouse gas recovery in the form of alcohols through electrochemistry technique and hydrogenation method are the important methods for commercialization of alcohols in future. It is also observed that algae based renewable bio-alcohols is highly influenced by carbohydrate content and sustainable approaches in algae conversion to bio-alcohols would bring greater demand in future market. There is a lack of innovation in higher alcohols production in single process and this could be bounded by combining dehydrogenation and decarboxylation techniques. Finally, this review enlists the opportunities and challenges of existing alcohols production and recommended the possible routes for making significant enhancement in production.


Assuntos
Biocombustíveis , Éteres , Biomassa , Etanol , Fermentação
9.
Bioresour Technol ; 344(Pt B): 126096, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626763

RESUMO

Microalgae are the most prospective raw materials for the production of biofuels, pyrolysis is an effective method to convert biomass into bioenergy. However, biofuels derived from the pyrolysis of microalgae exhibit poor fuel properties due to high content of moisture and protein. Co-pyrolysis is a simple and efficient method to produce high-quality bio-oil from two or more materials. Tires, plastics, and bamboo waste are the optimal co-feedstocks based on the improvement of yield and quality of bio-oil. Moreover, adding catalysts, especially CaO and Cu/HZSM-5, can enhance the quality of bio-oil by increasing aromatics content and decreasing oxygenated and nitrogenous compounds. Consequently, this paper provides a critical review of the production of bio-oil from co-pyrolysis of microalgae with other biomass wastes. Meanwhile, the underlying mechanism of synergistic effects and the catalytic effect on co-pyrolysis are discussed. Finally, the economic viability and prospects of microalgae co-pyrolysis are summarized.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Catálise , Temperatura Alta , Óleos de Plantas , Polifenóis , Estudos Prospectivos , Pirólise
10.
J Hazard Mater ; 424(Pt B): 127396, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673394

RESUMO

The application of waste oils as pyrolysis feedstocks to produce high-grade biofuels is receiving extensive attention, which will diversify energy supplies and address environmental challenges caused by waste oils treatment and fossil fuel combustion. Waste oils are the optimal raw materials to produce biofuels due to their high hydrogen and volatile matter content. However, traditional disposal methods such as gasification, transesterification, hydrotreating, solvent extraction, and membrane technology are difficult to achieve satisfactory effects owing to shortcomings like enormous energy demand, long process time, high operational cost, and hazardous material pollution. The usage of clean and safe pyrolysis technology can break through the current predicament. The bio-oil produced by the conventional pyrolysis of waste oils has a high yield and HHV with great potential to replace fossil fuel, but contains a high acid value of about 120 mg KOH/g. Nevertheless, the application of CaO and NaOH can significantly decrease the acid value of bio-oil to close to zero. Additionally, the addition of coexisting bifunctional catalyst, SBA-15@MgO@Zn in particular, can simultaneously reduce the acid value and positively influence the yield and quality of bio-oil. Moreover, co-pyrolysis with plastic waste can effectively save energy and time, and improve bio-oil yield and quality. Consequently, this paper presents a critical and comprehensive review of the production of biofuels using conventional and advanced pyrolysis of waste oils.


Assuntos
Biocombustíveis , Pirólise , Catálise , Alimentos , Temperatura Alta , Plásticos
11.
Chemosphere ; 286(Pt 1): 131656, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34325255

RESUMO

The utilization of microalgae in treating wastewater has been an emerging topic focussed on finding an economically sustainable and environmentally friendly approach to treating wastewater. Over the last several years, different types of con microalgae and bacteria consortia have been experimented with to explore their potential in effectively treating wastewater from different sources. The basic features considered while determining efficiency is their capacity to remove nutrients including nitrogen (N) and phosphorus (P) and heavy metals like arsenic (As), lead (Pb), and copper (Cu). This paper reviews the efficiency of microalgae as an approach to treating wastewater from different sources and compares conventional and microalgae-based treatment systems. The paper also discusses the characteristics of wastewater, conventional methods of wastewater treatment that have been used so far, and the technological mechanisms for removing nutrients and heavy metals from contaminated water. Microalgae can successfully eliminate the suspended nutrients and have been reported to successfully remove N, P, and heavy metals by up to 99.6 %, 100 %, and 13%-100 % from different types of wastewater. However, although a microalgae-based wastewater treatment system offers some benefits, it also presents some challenges as outlined in the last section of this paper. Performance in eliminating nutrients from wastewater is affected by different parameters such as temperature, biomass productivity, osmotic ability, pH, O2 concentration. Therefore, the conducting of pilot-scale studies and exploration of the complexities of contaminants under complex environmental conditions is recommended.


Assuntos
Microalgas , Biomassa , Nitrogênio , Fósforo , Águas Residuárias
12.
Environ Res ; 204(Pt A): 111967, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34450159

RESUMO

Green synthesis approaches of nanomaterials (NMs) have received considerable attention in recent years as it addresses the sustainability issues posed by conventional synthesis methods. However, recent works of literature do not present the complete picture of biogenic NMs. This paper addresses the previous gaps by providing insights into the stability and toxicity of NMs, critically reviewing the various biological agents and solvents required for synthesis, sheds light on the factors that affect biosynthesis, and outlines the applications of NMs across various sectors. Despite the advantages of green synthesis, current methods face challenges with safe and appropriate solvent selection, process parameters that affect the synthesis process, nanomaterial cytotoxicity, bulk production and NM morphology control, tedious maintenance, and knowledge deficiencies. Consequently, the green synthesis of NMs is largely trapped in the laboratory phase. Nevertheless, the environmental friendliness, biocompatibility, and sensitivities of the resulting NMs have wider applications in biomedical science, environmental remediation, and consumer industries. To the scale-up application of biogenic NMs, future research should be focused on understanding the mechanisms of the synthesis processes, identifying more biological and chemical agents that can be used in synthesis, and developing the practicality of green synthesis at the industrial scale, and optimizing the factors affecting the synthesis process.


Assuntos
Recuperação e Remediação Ambiental , Nanoestruturas , Nanoestruturas/toxicidade , Solventes
13.
J Hazard Mater ; 423(Pt A): 126921, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34523506

RESUMO

Colourants, micropollutants and heavy metals are regarded as the most notorious hazardous contaminants found in rivers, oceans and sewage treatment plants, with detrimental impacts on human health and environment. In recent development, algal biomass showed great potential for the synthesis of engineered algal adsorbents suitable for the adsorptive management of various pollutants. This review presents comprehensive investigations on the engineered synthesis routes focusing mainly on mechanical, thermochemical and activation processes to produce algal adsorbents. The adsorptive performances of engineered algal adsorbents are assessed in accordance with different categories of hazardous pollutants as well as in terms of their experimental and modelled adsorption capacities. Due to the unique physicochemical properties of macroalgae and microalgae in their adsorbent forms, the adsorption of hazardous pollutants was found to be highly effective, which involved different mechanisms such as physisorption, chemisorption, ion-exchange, complexation and others depending on the types of pollutants. Overall, both macroalgae and microalgae not only can be tailored into different forms of adsorbents based on the applications, their adsorption capacities are also far more superior compared to the conventional adsorbents.


Assuntos
Microalgas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Humanos , Águas Residuárias , Água , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 809: 151170, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699825

RESUMO

The continuous growth of population and the steady improvement of people's living standards have accelerated the generation of massive food waste. Untreated food waste has great potential to harm the environment and human health due to bad odor release, bacterial leaching, and virus transmission. However, the application of traditional disposal techniques like composting, landfilling, animal feeding, and anaerobic digestion are difficult to ease the environmental burdens because of problems such as large land occupation, virus transmission, hazardous gas emissions, and poor efficiency. Pyrolysis is a practical and promising route to reduce the environmental burden by converting food waste into bioenergy. This paper aims to analyze the characteristics of food waste, introduce the production of biofuels from conventional and advanced pyrolysis of food waste, and provide a basis for scientific disposal and sustainable management of food waste. The review shows that co-pyrolysis and catalytic pyrolysis significantly impact the pyrolysis process and product characteristics. The addition of tire waste promotes the synthesis of hydrocarbons and inhibits the formation of oxygenated compounds efficiently. The application of calcium oxide (CaO) exhibits good performance in the increment of bio-oil yield and hydrocarbon content. Based on this literature review, pyrolysis can be considered as the optimal technique for dealing with food waste and producing valuable products.


Assuntos
Pirólise , Eliminação de Resíduos , Biocombustíveis , Catálise , Alimentos , Humanos
15.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960953

RESUMO

The present study was conducted to optimize the extraction yield of starch from sago (Metroxylon sagu) pith waste (SPW) with the assistance of ultrasound ensued by the transformation of extracted starch into a higher value-added bioplastic film. Sago starch with extraction yield of 71.4% was successfully obtained using the ultrasound-assisted extraction, with the following conditions: particle size <250 µm, solid loading of 10 wt.%, ultrasonic amplitude of 70% and duty cycle of 83% in 5 min. The rapid ultrasound approach was proven to be more effective than the conventional extraction with 60.9% extraction yield in 30 min. Ultrasound-extracted starch was found to exhibit higher starch purity than the control starch as indicated by the presence of lower protein and ash contents. The starch granules were found to have irregular and disrupted surfaces after ultrasonication. The disrupted starch granules reduced the particle size and increased the swelling power of starch which was beneficial in producing a film-forming solution. The ultrasound-extracted sago starch was subsequently used to prepare a bioplastic film via solution casting method. A brownish bioplastic film with tensile strength of 0.9 ± 0.1 MPa, Young's modulus of 22 ± 0.8 MPa, elongation at break of 13.6 ± 2.0% and water vapour permeability (WVP) of 1.11 ± 0.1 × 10-8 g m-1 s-1 Pa-1 was obtained, suggesting its feasibility as bioplastic material. These findings provide a means of utilization for SPW which is in line with the contemporary trend towards greener and sustainable products and processes.

16.
Energy Policy ; 154: 112322, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34566236

RESUMO

Being declared a global emergency, the COVID-19 pandemic has taken many lives, threatened livelihoods and businesses around the world. The energy industry, in particular, has experienced tremendous pressure resulting from the pandemic. In response to such a challenge, the development of sustainable resources and renewable energy infrastructure has demonstrated its potential as a promising and effective strategy. To sufficiently address the effect of COVID-19 on renewable energy development strategies, short-term policy priorities should be identified, while mid-term and long-term action plans should be formulated in achieving the well-defined renewable energy targets and progress towards a more sustainable energy future. In this review, opportunities, challenges, and significant impacts of the COVID-19 pandemic on current and future sustainable energy strategies were analyzed in detail; while drawing from experiences in identifying reasonable behaviors, orientating appropriate actions, and policy implications on the sustainable energy trajectory were also mentioned. Indeed, the question is that whether the COVID-19 pandemic will kill us or provide us with a precious lesson on future sustainable energy development.

17.
J Hazard Mater ; 416: 125912, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492846

RESUMO

Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Humanos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
18.
Chemosphere ; 285: 131535, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34329137

RESUMO

Genetic engineering applications in the field of biofuel are rapidly expanding due to their potential to boost biomass productivity while lowering its cost and enhancing its quality. Recently, fourth-generation biofuel (FGB), which is biofuel obtained from genetically modified (GM) algae biomass, has gained considerable attention from academic and industrial communities. However, replacing fossil resources with FGB is still beset with many challenges. Most notably, technical aspects of genetic modification operations need to be more fully articulated and elaborated. However, relatively little attention has been paid to GM algal biomass. There is a limited number of reviews on the progress and challenges faced in the algal genetics of FGB. Therefore, the present review aims to fill this gap in the literature by recapitulating the findings of recent studies and achievements on safe and efficient genetic manipulation in the production of FGB. Then, the essential issues and parameters related to genome editing in algal strains are highlighted. Finally, the main challenges to FGB pertaining to the diffusion risk and regulatory frameworks are addressed. This review concluded that the technical and biosafety aspects of FGB, as well as the complexity and diversity of the related regulations, legitimacy concerns, and health and environmental risks, are among the most important challenges that require a strong commitment at the national/international levels to reach a global consensus.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Engenharia Genética , Microalgas/genética , Plantas
19.
J Environ Manage ; 296: 113194, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243094

RESUMO

The production of chemicals and fuels from renewable biomass with the primary aim of reducing carbon footprints has recently become one of the central points of interest. The use of lignocellulosic biomass for energy production is believed to meet the main criteria of maximizing the available global energy source and minimizing pollutant emissions. However, before usage in bioenergy production, lignocellulosic biomass needs to undergo several processes, among which biomass pretreatment plays an important role in the yield, productivity, and quality of the products. Acid-based pretreatment, one of the existing methods applied for lignocellulosic biomass pretreatment, has several advantages, such as short operating time and high efficiency. A thorough analysis of the characteristics of acid-based biomass pretreatment is presented in this review. The environmental concerns and future challenges involved in using acid pretreatment methods are discussed in detail to achieve clean and sustainable bioenergy production. The application of acid to biomass pretreatment is considered an effective process for biorefineries that aim to optimize the production of desired products while minimizing the by-products.


Assuntos
Biocombustíveis , Lignina , Biomassa , Fontes Geradoras de Energia
20.
J Biotechnol ; 338: 81-90, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298023

RESUMO

Microalgae are a promising feedstock for carbon-neutral biofuel production due to their superior cellular composition. Alternatively, oxidative torrefaction has been recognized as a potential thermochemical technique for microalgal solid biofuel upgrading. Herein, by using microalga N. oceanica as a feedstock, several characterizations are adopted for evaluating the potential of oxidative torrefaction towards microalgal solid biofuel production. The oxidatively torrefied microalgae can be upgraded as lignite. After in-depth analysis, significant change in the surface microstructure of oxidatively torrefied microalgae is largely changed (via wrinkle and fragmentation) The hydrophobicity, thermal decomposition, thermal stability, and aromatization of oxidatively torrefied microalgae can be largely enhanced as the oxidative torrefaction severity increase. With the increasing torrefaction temperature, the hydrophobicity of oxidative torrefied microalgae gradually improved. The decomposition of C-2/3/5, and -OCH3, the CO bonds of CH3CO-, and the aromatization occurs via oxidative torrefaction according to the NMR analysis. For XPS analysis, torrefaction operation significantly decreases the carbide carbon and enhances the graphitization. As a result, the thermal stability of oxidatively torrefied microalgae is improved. Conclusively, the information obtained in this study can provide insights into the evaluation of oxidative torrefaction performance and fuel properties of microalgal solid biofuel, which may help accelerate the advancement of oxidative torrefaction industrialization.


Assuntos
Microalgas , Estramenópilas , Biocombustíveis , Biomassa , Estresse Oxidativo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...