Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 365: 15-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646016

RESUMO

BACKGROUND AND AIMS: The SYNTAX score is clinically validated to stratify number of lesions and pattern of CAD. A better understanding of the underlying molecular mechanisms influencing the pattern and complexity of coronary arteries lesions among CAD patients is needed. METHODS: Human arterial biopsies from 49 patients (16 low-SYNTAX-score (LSS, <23), 16 intermediate-SYNTAX-score (ISS, 23 to 32) and 17 high-SYNTAX-score (HSS, >32)) were evaluated using Affymetrix GeneChip® Human Genome U133 Plus 2.0 microarray. The data were validated by Next-Generation Sequencing (NGS). Primary VSMC from patients with low and high SYNTAX scores were isolated and compared using immunohistochemistry, qPCR and immunoblotting to confirm mRNA and proteomic results. RESULTS: The IL1B was verified as the top upstream regulator of 47 inflammatory DEGs in LSS patients and validated by another sets of patient samples using NGS analysis. The upregulated expression of IL1B was translated to increased level of IL1ß protein in the LSS tissue based on immunohistochemical quantitative analysis. Plausibility of idea that IL1B in the arterial wall could be originated from VSMC was checked by exposing culture to proinflammatory conditions where IL1B came out as the top DEG (logFC = 7.083, FDR = 1.38 × 10-114). The LSS patient-derived primary VSMCs confirmed higher levels of IL1B mRNA and protein. CONCLUSIONS: LSS patients could represent a group of patients where IL1B could play a substantial role in disease pathogenesis. The LSS group could represent a plausible cohort of patients for whom anti-inflammatory therapy could be considered.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/patologia , Músculo Liso Vascular/patologia , Proteômica , Angiografia Coronária , Índice de Gravidade de Doença , Interleucina-1beta
2.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919917

RESUMO

In cancer cells, a vital cellular process during metastasis is the transformation of epithelial cells towards motile mesenchymal cells called the epithelial to mesenchymal transition (EMT). The cytoskeleton is an active network of three intracellular filaments: actin cytoskeleton, microtubules, and intermediate filaments. These filaments play a central role in the structural design and cell behavior and are necessary for EMT. During EMT, epithelial cells undergo a cellular transformation as manifested by cell elongation, migration, and invasion, coordinated by actin cytoskeleton reorganization. The actin cytoskeleton is an extremely dynamic structure, controlled by a balance of assembly and disassembly of actin filaments. Actin-binding proteins regulate the process of actin polymerization and depolymerization. Microtubule reorganization also plays an important role in cell migration and polarization. Intermediate filaments are rearranged, switching to a vimentin-rich network, and this protein is used as a marker for a mesenchymal cell. Hence, targeting EMT by regulating the activities of their key components may be a potential solution to metastasis. This review summarizes the research done on the physiological functions of the cytoskeleton, its role in the EMT process, and its effect on multidrug-resistant (MDR) cancer cells-highlight some future perspectives in cancer therapy by targeting cytoskeleton.

3.
Biomedicines ; 8(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872372

RESUMO

Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.

4.
Cancers (Basel) ; 12(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963677

RESUMO

Cytoskeletal proteins, which consist of different sub-families of proteins including microtubules, actin and intermediate filaments, are essential for survival and cellular processes in both normal as well as cancer cells. However, in cancer cells, these mechanisms can be altered to promote tumour development and progression, whereby the functions of cytoskeletal proteins are co-opted to facilitate increased migrative and invasive capabilities, proliferation, as well as resistance to cellular and environmental stresses. Herein, we discuss the cytoskeletal responses to important intracellular stresses (such as mitochondrial, endoplasmic reticulum and oxidative stresses), and delineate the consequences of these responses, including effects on oncogenic signalling. In addition, we elaborate how the cytoskeleton and its associated molecules present themselves as therapeutic targets. The potential and limitations of targeting new classes of cytoskeletal proteins are also explored, in the context of developing novel strategies that impact cancer progression.

5.
Oncogene ; 37(9): 1142-1158, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29255248

RESUMO

Evolutionarily conserved across eukaryotic cells, macroautophagy (herein autophagy) is an intracellular catabolic degradative process targeting damaged and superfluous cellular proteins, organelles, and other cytoplasmic components. Mechanistically, it involves formation of double-membrane vesicles called autophagosomes that capture cytosolic cargo and deliver it to lysosomes, wherein the breakdown products are eventually recycled back to the cytoplasm. Dysregulation of autophagy often results in various disease manifestations, including neurodegeneration, microbial infections, and cancer. In the case of cancer, extensive attention has been devoted to understanding the paradoxical roles of autophagy in tumor suppression and tumor promotion. In this review, while we summarize how this self-eating process is implicated at various stages of tumorigenesis, most importantly, we address the link between autophagy and hallmarks of cancer. This would eventually provide a better understanding of tumor dependence on autophagy. We also discuss how therapeutics targeting autophagy can counter various transformations involved in tumorigenesis. Finally, this review will provide a novel insight into the mutational landscapes of autophagy-related genes in several human cancers, using genetic information collected from an array of cancers.


Assuntos
Autofagia , Transformação Celular Neoplásica/patologia , Neoplasias/patologia , Animais , Humanos
6.
Healthcare (Basel) ; 5(2)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28538673

RESUMO

Breast cancer patients face challenges throughout the journey of diagnosis, treatment, post-treatment, and recovery. The breast cancer patient is exposed to a multidisciplinary team including doctors, nurses, therapists, counselors, and psychologists. While the team assembled together aims to address multiple facets in breast cancer care, the sub-specialized nature of individual professional practices may constrain the overview of patients' holistic needs and a comprehensive approach to cancer management. This paper aims to provide an overview of the holistic needs of breast cancer patients at each stage of their cancer journey, addressing their complex physical, psychological, and social needs. As every patient is different, cancer care has to be tailored to each patient based on a holistic needs assessment. This paper also explores how support can be provided from the perspectives of the healthcare providers, family members and caretakers. Examples of general practices at healthcare institutions worldwide as well as supportive care provided by support groups are discussed. The needs of breast cancer patients extend beyond the resolution of cancer as a disease, and the restoration of health as far as possible is a critical component of healing. Understanding the complex issues involved in the journey of breast cancer will aid healthcare providers to be better equipped to sensitively address their concerns and focus on healing the patient holistically. METHODOLOGY: This paper provides a literature review of validated practices in different countries and elaborates on the holistic needs of patients at various stages of recovery. This review is based on more than a decade of publications sourced from multiple resources including PubMed journal articles; books and official websites of breast cancer organizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...