Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(22): 9785-9796, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613438

RESUMO

The link between crystal and electronic structure is crucial for understanding structure-property relations in solid-state chemistry. In particular, it has been instrumental in understanding topological materials, where electrons behave differently than they would in conventional solids. Herein, we identify 1D Bi chains as a structural motif of interest for topological materials. We focus on Sm3ZrBi5, a new quasi-one-dimensional (1D) compound in the Ln3MPn5 (Ln = lanthanide; M = metal; Pn = pnictide) family that crystallizes in the P63/mcm space group. Density functional theory calculations indicate a complex, topologically nontrivial electronic structure that changes significantly in the presence of spin-orbit coupling. Magnetic measurements show a quasi-1D antiferromagnetic structure with two magnetic transitions at 11.7 and 10.7 K that are invariant to applied field up to 9 T, indicating magnetically frustrated spins. Heat capacity, electrical, and thermoelectric measurements support this claim and suggest complex scattering behavior in Sm3ZrBi5. This work highlights 1D chains as an unexplored structural motif for identifying topological materials, as well as the potential for rich physical phenomena in the Ln3MPn5 family.

2.
Dalton Trans ; 51(22): 8688-8694, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35608176

RESUMO

The previously unreported layered compounds IrTe2I and RhTe2I were prepared by a high-pressure synthesis method. Single crystal X-ray and powder X-ray diffraction studies find that the compounds are isostructural, crystallizing in a layered orthorhombic structure in the non-centrosymmetric, non-symmorphic space group Pca21 (#29). Characterization reveals diamagnetic, high resistivity, semiconducting behavior for both compounds, consistent with the +3 chemical valence and d6 electronic configurations for both iridium and rhodium and the Te-Te dimers seen in the structural study. Electronic band structures are calculated for both compounds, showing good agreement with the experimental results.

3.
Sci Adv ; 6(6): eaay6407, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32083184

RESUMO

Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe3. The electron mobility is beyond 60,000 cm2 V-1 s-1, which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe3 is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe3 can be exfoliated to ultrathin flakes of three monolayers.

4.
Sci Adv ; 6(4): eaay6953, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32042902

RESUMO

Layered honeycomb magnets are of interest as potential realizations of the Kitaev quantum spin liquid (KQSL), a quantum state with long-range spin entanglement and an exactly solvable Hamiltonian. Conventional magnetically ordered states are present for all currently known candidate materials, however, because non-Kitaev terms in the Hamiltonians obscure the Kitaev physics. Current experimental studies of the KQSL are focused on 4d or 5d transition metal-based honeycombs, in which strong spin-orbit coupling can be expected, yielding Kitaev interaction that dominates in an applied magnetic field. In contrast, for 3d-based layered honeycomb magnets, spin-orbit coupling is weak, and thus, Kitaev physics should be substantially less accessible. Here, we report our studies on BaCo2(AsO4)2, for which we find that the magnetic order associated with the non-Kitaev interactions can be fully suppressed by a relatively low magnetic field, yielding a nonmagnetic material and implying the presence of strong magnetic frustration and weak non-Kitaev interactions.

5.
Sci Adv ; 4(5): eaar7969, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29736418

RESUMO

It is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials-even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties of superconductors is widely appreciated, although its study presents substantial challenges. The effect of a lack of a center of symmetry in a crystal structure, for example, has long been understood to necessitate that the wave function of the collective electron state that gives rise to superconductivity has to be more complex than usual. However, few nonhypothetical materials, if any, have actually been proven to display exotic superconducting properties as a result. We introduce two new superconductors that in addition to having noncentrosymmetric crystal structures also have chiral crystal structures. Because the wave function of electrons in solids is particularly sensitive to the host material's symmetry, crystal structure chirality is expected to have a substantial effect on their superconducting wave functions. Our two experimentally obtained chiral noncentrosymmetric superconducting materials have transition temperatures to superconductivity that are easily experimentally accessible, and our basic property characterization suggests that their superconducting properties may be unusual. We propose that their study may allow for a more in-depth understanding of how chirality influences the properties of superconductors and devices that incorporate them.

6.
Inorg Chem ; 55(15): 7605-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27442710

RESUMO

We present Rh2Cd15, the first binary compound in the Rh-Cd system. It is based on transition-metal-embedded (Rh@Cd11 and Rh@Cd12) endohedral Cd clusters that are single- and double-capped IC10 composite icosahedra/cubes. We demonstrate the structural connections between the clusters. On the basis of the analysis of atomic interactions and electron counting, 50 electrons per Rh2Cd15 is postulated to be the boundary between bonding and antibonding interactions. This understanding is supported by electronic structure calculations showing that the electron count for Rh2Cd15 (48 electrons per Rh2Cd15) is located close to a deep pseudogap in the electronic density of states at 50 electrons per formula unit, which we postulate is an important factor in determining the new compound's stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...