Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018044

RESUMO

Research into the speciation of sulfur and hydrogen molecules produced through the complex process of thermophilic dark fermentation has been conducted. Detailed surface studies of solid-gas systems using real biogas (biohydrogen) streams have unveiled the mechanisms and specific interactions between these gases and the physicochemical properties of a zeolite as an adsorbent. These findings highlight the potential of zeolites to effectively capture and interact with these molecules. In this study, the hydrogen sulphide removal analysis was conducted using 0.8 g of the adsorbent and at various reaction temperatures (25-125 °C), a flow rate of 100 mL min-1, and an initial concentration of approximately 5000 ppm hydrogen sulphide. The reaction temperature has been observed to be an essential parameter of Zeolite Socony Mobil - 5 adsorption capacity. The optimum adsorption capacity attains a maximum value of 0.00890 mg g-1 at an optimal temperature of 25 °C. The formation of sulphur species resulting from the hydrogen sulphide adsorption on the zeolite determines the kinetics, thermodynamics, and mass transfer behaviours of Zeolite Socony Mobil - 5 in hydrogen sulphide removal and Zeolite Socony Mobil - 5 is found to improve the quality of biohydrogen produced in thermophilic environments. Biohydrogen (raw gas) yield was enhanced from 2.48 mol H2 mol-1 hexose consumed before adsorption to 2.59 mol H2 mol-1 hexose consumed after adsorption at a temperature of 25 °C. The Avrami kinetic model was fitted for hydrogen sulphide removal on Zeolite Socony Mobil - 5. The process is explained well and fitted using the Temkin isotherm model and the investigation into thermodynamics reveals that the adsorption behaviour is exothermic and non-spontaneous. Furthermore, the gas molecule's freedom of movement becomes random. The adsorption phase is restricted by intra-particle diffusion followed by film diffusion during the transfer of hydrogen sulphide into the pores of Zeolite Socony Mobil - 5 prior to adsorption on its active sites. The utilisation of Zeolite Socony Mobil - 5 for hydrogen sulphide removal offers the benefit of reducing environmental contamination and exhibiting significant applications in industrial operations.

2.
J Environ Manage ; 367: 121905, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067334

RESUMO

Escalating global water pollution exacerbated by textile-dyeing wastewater (TDW) poses significant environmental and health concerns due to the insufficient treatment methods being utilized. Thus, it is imperative to implement more effective treatment solutions to address such issues. In this research, different environmentally-friendly strategies involving effluent recirculation (ER) and Rubia cordifolia plant-derived purpurin electron mediator (EM) were introduced to enhance the treatment of real TDW and bioelectricity generation performance of an anti-gravity flow microbial fuel cell (AGF-MFC). The results revealed that optimum performance was achieved with a combination of hydraulic retention time (HRT) of 48 h with a recirculation ratio of 1, where the reduction efficiency of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), ammonium (NH4+), nitrate (NO3-), sulphate (SO42-), ammonia nitrogen (NH3-N), colour and turbidity were 82.17 %, 82.15 %, 85.10 %, 80.52 %, 75.91 %, 59.52 %, 71.02 % and 93.10 %, respectively. In terms of bioelectricity generation performance, AGF-MFC showed a maximum output voltage and power density of 404.72 mV and 65.16 mW/m2, respectively. Moreover, the results also signified that higher treatment performance of TDW was obtained with natural purpurin from Rubia cordifolia plant than synthetic purpurin as EM. The reduced reactivity of highly stable synthetic purpurin EM for mediating the electron transfer was a contributing factor to the outperformance of plant-derived purpurin. Additionally, detailed electron-mediating mechanisms of purpurin were proposed to unravel the underlying electron transfer pathway involved in AGF-MFC. This research offers insight into the development of more sustainable solutions for managing TDW, and consequently reducing environmental pollution.

3.
Environ Sci Pollut Res Int ; 30(35): 84397-84411, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37358771

RESUMO

The enhancement of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) performance in energy retrieval from caffeine containing wastewater has been explored via various operating conditions (hydraulic retention time (HRT), multianode (MA), multicathode current collector (MC), external resistance). The anaerobic decaffeination and COD removal improved by 37 and 12% as the HRT extended from 1 to 5 d. The increment in contact time between the microbes and organic substrates promoted the degradation and contributed to higher power output (3.4-fold), CE (eightfold), and NER (14-16-fold). The MA and MC connections facilitated the electron transfer rate and the degradation rate of organic substrates in the multiple anodic zones, which enhanced the removal efficiency in the anaerobic compartment (Caffeine: 4.2%; COD: 7.4%) and led to higher electricity generation (Power: 4.7-fold) and energy recovery (CE: 1.4-fold; NER: 2.3-2.5-fold) compared to SA. The lower external resistance favored the growth of electrogens and induced higher electron flux, where the best treatment performance and electricity production was obtained when the external resistance approached the internal resistance. Overall, it was noteworthy that the optimum operating conditions were achieved with 5 d HRT, MA, and MC connection along with external resistance of 200 Ω, which significantly outperformed the initial conditions (1 d HRT, SA connection, and 1000 Ω) by 43.7 and 29.8% of caffeine and COD removal in the anaerobic compartment, respectively as well as 14-fold of power generation.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Cafeína , Áreas Alagadas , Eletricidade , Eletrodos
4.
Bioprocess Biosyst Eng ; 46(7): 995-1009, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160769

RESUMO

Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (µmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.


Assuntos
Eichhornia , Resíduos Industriais , Óleos de Plantas/química , Anaerobiose , Óleo de Palmeira , Reatores Biológicos , Metano/metabolismo , Digestão , Eliminação de Resíduos Líquidos
5.
Environ Sci Pollut Res Int ; 30(24): 65364-65378, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081370

RESUMO

Sugarcane vinasse has been reported as a high strength industrial wastewater that could cause severe environmental pollution due to its complex and bio-refractory compounds. Thus, the combined coagulation and sequencing batch biofilm reactor (SBBR) system was employed for the sugarcane vinasse treatment. This study aims to determine the recommended conditions of various parameters under coagulation and SBBR and investigate the effectiveness of combined processes. First, the approach of the coagulation process could achieve the maximum COD reduction and decolorization efficiencies of 79.0 ± 3.4% and 94.1 ± 1.9%, respectively, under the recommended conditions. Next, SBBR as an integrated biofilm reactor showed excellent synergistic biodegradability, removing 86.6 ± 4.3% COD concentration and 94.6 ± 3.8% color concentration at 3.0 g·COD/L of substrate loading concentration. The kinetic studies of SBBR revealed that the first-order kinetic model was the best fit for COD reduction efficiency. In contrast, the second-order kinetic model was the best fit for decolorization efficiency. The SBBR reaction was further investigated by ultraviolet-visible spectrophotometry (UV-Vis). In the combined processes, SBBR followed by the coagulation process (SBBR-CP) showed greater COD reduction and decolorization efficiencies (97.5 ± 0.3 and 99.4 ± 0.1%) when compared to the coagulation process followed by SBBR (CP-SBBR). This study demonstrated the removal performance and potential application of the combined sequential process to produce effluent that can be reused for bioethanol production and fertigation. This finding provides additional insight for developing effective vinasse treatment using combined chemical and biological processes.


Assuntos
Saccharum , Eliminação de Resíduos Líquidos , Biofilmes , Reatores Biológicos , Poluição Ambiental , Cinética , Águas Residuárias
6.
Environ Sci Pollut Res Int ; 30(21): 59877-59890, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37016256

RESUMO

This study aimed to compare the performance of biofiltration, constructed wetland, and constructed wetland microbial fuel cell (CW-MFC). The transformation from a biofiltration unit to a hybrid CW-MFC was demonstrated with the advantages of improvement of wastewater treatment while generating electricity simultaneously. The introduction of plants to the upper region of the bioreactor enhanced the DO level by 0.8 mg/L, ammonium removal by 5 %, and COD removal by 1 %. The integration of electrodes and external circuits stimulated the degradation rate of organic matter in the anodic region (1 % without aeration and 3 % with aeration) and produced 5.13 mW/m3 of maximum power density. Artificial aeration improved the nitrification efficiency by 38 % and further removed the residual COD to an efficiency of 99 %. The maximum power density was also increased by 3.2 times (16.71 mW/m3) with the aid of aeration. In treating higher organic loading wastewater (3M), the maximum power density showed a significant increment to 78.01 mW/m3 (4.6-fold) and the COD removal efficiency was 98 %. The ohmic overpotential dominated the proportion of total loss (67-91 %), which could be ascribed to the low ionic conductivity. The reduction in activation and concentration loss contributed to the lower internal resistance with the additional aeration and higher organic loading. Overall, the transformation from biofiltration to a hybrid CW-MFC system is worthwhile since the systems quite resemble while CW-MFC could improve the wastewater treatment as well as recover energy from the treated wastewater.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Águas Residuárias , Áreas Alagadas , Eletricidade , Eletrodos
7.
Environ Sci Pollut Res Int ; 30(20): 58516-58526, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36988807

RESUMO

Cathode in photocatalytic fuel cell (PFC) plays a crucial role in degradation of organic contaminants. In this study, synthesized copper oxide (CuO) was loaded on carbon plate and used as photocathode in PFC for degradation of synthetic azo dye Reactive Black 5 (RB5) and real textile wastewater. Morphology and structural phase of the synthesized CuO were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Several operating parameters had been investigated such as light irradiation, initial dye concentration, and pH of azo dye solution within 6 h of irradiation time. The lowest initial concentration of RB5 (10 mg L-1) achieved 100% color removal compared to the highest initial concentration (40 mg L-1) which only achieved 77.1% color removal within 6 h of irradiation time. The influence of external resistance was significant in electricity generation but trivial in dye degradation efficiency. The external resistance of 6000 Ω yielded highest maximum power density, with Pmax of 0.2631 µW cm-2, followed by 1000 Ω (0.2196 µW cm-2) and 8000 Ω (0.1587 µW cm-2), respectively. The real textile wastewater with dilution ratio (DR) 1:6 yielded the highest energy conversion efficiency, η (3.62%), followed by DR 1:4 (3.19%) and DR 1:2 (1.96%), respectively.


Assuntos
Compostos Azo , Águas Residuárias , Compostos Azo/química , Eletricidade , Têxteis
8.
Bioprocess Biosyst Eng ; 46(3): 359-371, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35796867

RESUMO

The under-treated wastewater, especially remaining carcinogenic aromatic compounds in wastewater discharge has been expansively reported, wherein the efficiency of conventional wastewater treatment is identified as the primary contributor source. Herein, the advancement of wastewater treatments has drawn much attention in recent years. In the current study, combined sequential and hybridized treatment of thermolysis and coagulation-flocculation provides a novel advancement for environmental emerging pollutant (EP) prescription. This research is mainly demonstrating the mitigation efficiency and degradation pathway of pararosaniline (PRA) hybridized and combined sequential wastewater treatment. Notably, PRA degradation dominantly via a linkage of reaction: thermal cleavage, deamination, silication and diazene reduction. Thermolysis acts as an initiator for the PRA decomposition through thermally induced bond dissociation energy (BDE) for molecular fragmentation whilst coagulation-flocculation facilitates the formation of organo-bridged silsesquioxane as the final degradation product. Different from conventional treatment, the hybridized treatment showed excellent synergistic degradability by removing 99% PRA and its EPs, followed by combined sequential treatment method with 86% reduction. Comprehensive degradation pathway breakdown of carcinogenic and hardly degradable aromatic compounds provides a new insight for wastewater treatment whereby aniline and benzene are entirely undetectable in effluent. The degradation intermediates, reaction derivatives and end products were affirmed by gas chromatography-mass spectrometry, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometry (GC-MS, FTIR and UV-Vis). This finding provides valuable guidance in establishing efficient integrated multiple-step wastewater treatments.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Benzeno/análise
9.
Environ Sci Pollut Res Int ; 30(12): 34363-34377, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36512276

RESUMO

Photocatalytic fuel cell (PFC) was employed to provide renewable power sources to photoelectro-Fenton (PEF) process to fabricate a double-chambered hybrid system for the treatment of azo dye, Amaranth. The PFC-PEF hybrid system was interconnected by a circuit attached to the electrodes in PFC and PEF. Circuit connection is the principal channel for the electron transfer and mobility between PFC and PEF. Thus, different circuit connections were evaluated in the hybrid system for their influences on the Amaranth dye degradation. The PFC-PEF system under the complete circuit connection condition attained the highest decolourization efficiency of Amaranth (PFC: 98.85%; PEF: 95.69%), which indicated that the complete circuit connection was crucial for in-situ formation of reactive species in dye degradation. Besides, the pivotal role of ultraviolet (UV) light irradiation in the PFC-PEF system for both dye degradation and electricity generation was revealed through various UV light-illuminating conditions applied for PFC and PEF. A remarkable influence of UV light irradiation on the production of hydrogen peroxide and generation and regeneration of Fe2+ in PEF was demonstrated. This study provided a comprehensive mechanistic insight into the dye degradation and electricity generation by the PFC-PEF system.


Assuntos
Corante Amaranto , Raios Ultravioleta , Peróxido de Hidrogênio , Compostos Azo , Eletricidade , Eletrodos , Oxirredução
10.
Environ Sci Pollut Res Int ; 30(7): 17546-17563, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36197611

RESUMO

The treatment of single and binary azo dyes, as well as the effect of the circuit connection, aeration, and plant on the performance of UFCW-MFC, were explored in this study. The decolorization efficiency of Remazol Yellow FG (RY) (single dye: 98.2 %; binary dye: 92.3 %) was higher than Reactive Black 5 (RB5) (single: 92.3 %; binary: 86.7 %), which could be due to monoazo dye (RY) requiring fewer electrons to break the azo bond compared to the diazo dye (RB5). In contrast, the higher decolorization rate of RB5 in binary dye indicated the removal rate was affected by the electron-withdrawing groups in the dye structure. The closed circuit enhanced about 2% of color and 4% of COD removal. Aeration improved the COD removal by 6%, which could be contributed by the mineralization of intermediates. The toxicity of azo dyes was reduced by 11-26% and the degradation pathways were proposed. The dye removal by the plants was increased with a higher contact time. RB5 was more favorable to be uptook by the plant as RB5 holds a higher partial positive charge. 127.39 (RY), 125.82 (RB5), and 58.66 mW/m3 (binary) of maximum power density were generated. The lower power production in treating the binary dye could be due to more electrons being utilized for the degradation of higher dye concentration. Overall, the UFCW-MFC operated in a closed circuit, aerated, and planted conditions achieved the optimum performance in treating binary azo dyes containing wastewater (dye: 87-92%; COD: 91%) compared to the other conditions (dye: 83-92%; COD: 78-87%).


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Corantes , Áreas Alagadas , Eletricidade , Compostos Azo/química
11.
Environ Sci Pollut Res Int ; 29(54): 81368-81382, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35729394

RESUMO

To enhance dye removal and energy recovery efficiencies in single-pair electrode photocatalytic fuel cell (PFC-AC), dual cathodes PFC (PFC-ACC) and dual photoanodes PFC (PFC-AAC) were established. Results revealed that PFC-AAC yielded the highest decolorization rate (1.44 h-1) due to the promotion of active species such as superoxide radical (•O2-) and hydroxyl radical (•OH) when the number of photoanode was doubled. The results from scavenging test and UV-Vis spectrophotometry disclosed that •OH was the primary active species in dye degradation of PFC. Additionally, PFC-AAC also exhibited the highest power output (17.99 µW) but the experimental power output was much lower than the theoretical power output (28.24 µW) due to the strong competition of electron donors of doubled photoanodes to electron acceptors at the single cathode and its high internal resistance. Besides, it was found that the increments of dye volume and initial dye concentration decreased the decolorization rate but increased the power output due to the higher amount of sacrificial agents presented in PFC. Based on the abovementioned findings and the respective dye intermediate products identified from gas chromatography-mass spectrometry (GC-MS), the possible degradation pathway of RR120 was scrutinized and proposed.


Assuntos
Radical Hidroxila , Superóxidos , Eletrodos , Oxidantes
12.
Environ Sci Pollut Res Int ; 29(40): 61298-61306, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35441287

RESUMO

Co-digestion between sugarcane vinasse (Vn) and water hyacinth (WH) at various mixing ratios of 0:1, 1:0, 1:3, 3:1, and 1:1 was carried out under thermophilic conditions (55 °C) for 60 days. The effect of various mixing ratios on the pH changes, soluble chemical oxygen demand (sCOD) reduction, and cumulative biogas production was investigated. The first order, modified Gompertz, and logistic function kinetic models were selected to fit the experimental data. Model discrimination was conducted through the Akaike Information Criterion (AIC). The study revealed that co-digestion shows better performance compared to the mono-digestion of both substrates. Vn:WH mixing ratio 1:1 with inoculum to substrate ratio (ISR) of 0.38 g VSinoculum/g VSsubstrate is the most favorable ratio, achieving sCOD reduction efficiency and cumulative biogas production of 71.6% and 1229 mL, respectively. Model selection through AIC revealed that ratio 1:1 was best fitted to the logistic function kinetic model (R2 = 0.9897) with Ym and K values of 1232 mL and 31 mL/day, respectively.


Assuntos
Eichhornia , Saccharum , Anaerobiose , Biocombustíveis , Reatores Biológicos , Metano
13.
Int J Environ Res ; 16(1): 3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34899925

RESUMO

ABSTRACT: Photocatalytic degradation performance is highly related to optimized operating parameters such as initial concentration, pH value, and catalyst dosage. In this study, the impact of various parameters on the photocatalytic degradation of anaerobically digested vinasse (AnVE) has been determined through decolourization and chemical oxygen demand (COD) reduction efficiency using zinc oxide (ZnO) photocatalyst. In this context, the application of photocatalytic degradation in treating sugarcane vinasse using ZnO is yet to be explored. The COD reduction efficiency and decolourization achieved 83.40% and 99.29%, respectively, under the conditions of 250 mg/L initial COD concentration, pH 10, and 2.0 g/L catalyst dosage. The phytotoxicity assessment was also conducted to determine the toxicity of AnVE before and after treatment using mung bean (Vigna radiata). The reduction of root length and the weight of mung bean indicated that the sugarcane vinasse contains enormous amounts of organic substances that affect the plant's growth. The toxicity reduction in the AnVE solution can be proved by UV-Vis absorption spectra. Furthermore, the catalyst recovery achieved 93% in the reusability test. However, the COD reduction efficiency and decolourization were reduced every cycle. It was due to the depletion of the active sites in the catalyst with the adsorption of organic molecules. Thus, it can be concluded that the photocatalytic degradation in the treatment of AnVE was effective in organic degradation, decolorization, toxicity reduction and can be reused after the recovery process.

14.
Bioresour Technol ; 336: 125319, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34049168

RESUMO

A pilot scale anaerobic degradation of sugarcane vinasse was carried out at various hydraulic retention time (HRT) in the Anaerobic Suspended Growth Closed Bioreactor (ASGCB) under thermophilic temperature. The performance and kinetics were evaluated through the Haldane-Andrews model to investigate the substrate inhibition potential of sugarcane vinasse. All parameters show great performance between HRT 35 and 25 days: chemical oxygen demand (COD) reduction efficiency (81.6 to 86.8%), volatile fatty acids (VFA) reduction efficiency (92.4 to 98.5%), maximum methane yield (70%) and maximum biogas production (19.35 L/day). Furthermore, steady state values from various HRT were obtained in the kinetic evaluation for: rXmax (1.20 /day), Ks (19.95 gCOD/L), Ki (7.00 gCOD/L) and [Formula: see text] (0.33 LCH4/gCOD reduction). This study shows that anaerobic degradation of sugarcane vinasse through ASGCB could perform well at high HRT and provides a low degree of substrate inhibition as compared to existing studies from literature.


Assuntos
Saccharum , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Cinética , Metano
15.
Chemosphere ; 263: 128212, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297171

RESUMO

A unidirectional flow solar photocatalytic fuel cell (PFC) was successfully developed for the first time to offer alternative for electricity generation and simultaneous wastewater treatment. This study was focused on the synthesis of α-, δ- and ß-MnO2 by wet chemical hydrothermal method for application as the cathodic catalyst in PFC. The crystallographic evolution was performed by varying the ratios of KMnO4 to MnSO4. The mechanism of the PFC with the MnO2/C as cathode was also discussed. Results showed that the catalytic activity of MnO2/C cathode was mainly predominated by their crystallographic structures which included Mn-O bond strength and tunnel size, following order of α- > Î´- > ß-MnO2/C. Interestingly, it was discovered that the specific surface areas (SBET) of different crystal phases did not give an impact on the PFC performance. However, the Pmax could be significantly influenced by the micropore surface area (Smicro) in the comparison among α-MnO2. Furthermore, the morphological transformation carried out by altering the hydrothermal duration demonstrated that the nanowire α-M3(24 h)/C with 1:1 ratio of KMnO4 and MnSO4 yielded excellent PFC performance with a Pmax of 2.8680 µW cm-2 and the lowest Rint of 700 Ω.


Assuntos
Compostos de Manganês , Óxidos , Catálise , Eletricidade , Eletrodos
16.
J Environ Health Sci Eng ; 18(2): 769-777, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312601

RESUMO

In this study, the degradation efficiency and electricity generation of the azo dyes affected by the functional groups and molecular structure in a solar photocatalytic fuel cell (PFC) system were investigated and discussed in detail. Four different azo dyes such as, Acid Orange 7 (AO7), Acid Red 18 (AR18), Reactive Black 5 (RB5), Reactive Red 120 (RR120) with different molecular structure were evaluated. The degradation efficiency of AO7, AR18, RB5 and RR120 achieved 5.6 ± 0.3%, 11.1 ± 0.6%, 41.9 ± 0.9% and 52.1 ± 1.3%, respectively, after 6 h irradiated under solar light. In addition, the maximum power density, Pmax for AO7, AR18, RB5 and RR120 was 0.0269 ± 0.01, 0.111 ± 0.03, 1.665 ± 0.67 and 4.806 ± 1.79 mW cm-2, respectively. Meanwhile, the concentration of COD for AO7, AR18, RB5 and RR120 reduced to 16 ± 0.1, 10 ± 0.3, 7 ± 0.6 and 3 ± 0.9 mg L-1, respectively. The concentration ratio of benzene / naphthalene, benzene / azo bond and naphthalene / azo bond, respectively, was analyzed to investigate the impact of the functional groups over photodegradation of the azo dyes in PFC. Electron releasing groups (-OH and -NH2) and electron withdrawing groups (-SO3Na) which attached to the naphthalene or benzene ring also played a pivotal role in the degradation mechanism.

17.
J Environ Health Sci Eng ; 18(2): 793-807, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312603

RESUMO

This study demonstrated the effectiveness of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment concurrently with bioelectricity generation. The objectives of this study were to examine the effect of influent substrate concentration (0.405 g/L, 0.810 g/L, 1.215 g/L, 1.620 g/L), anode distributions (11 cm, 17 cm, 23 cm ) and surface morphologies for biofilm formation on the performance of wastewater treatment and power generation. The optimum performance was obtained with substrate concentration of 0.810 g/L. The COD removal efficiency, output voltage, internal resistance, power density and current density obtained were 84.64%, 610 mV, 200 Ω, 162.59 mW/m2 and 468.74 mA/m2, respectively. The Coulombic Efficiency (CE), Normalized Energy Recovery (NERS and NERv) were 1.03%, 789.38 kWh/kg COD and 22.56 kWh/m3, respectively. The results also indicate that the output voltage and power generation obtained in a continuous up-flow MFC were higher with A3 (23 cm), which is of larger electrodes spacing followed by A2 (17 cm) and A1 (11 cm) caused by the enrichment of anaerobic microbial population at A1.

18.
Sci Total Environ ; 720: 137370, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325554

RESUMO

Complete degradation of azo dye has always been a challenge due to the refractory nature of azo dye. An innovative hybrid system, constructed wetland-microbial fuel cell (CW-MFC) was developed for simultaneous azo dye remediation and energy recovery. This study investigated the effect of circuit connection and the influence of azo dye molecular structures on the degradation rate of azo dye and bioelectricity generation. The closed circuit system exhibited higher chemical oxygen demand (COD) removal and decolourisation efficiencies compared to the open circuit system. The wastewater treatment performances of different operating systems were ranked in the decreasing order of CW-MFC (R1 planted-closed circuit) > MFC (R2 plant-free-closed circuit) > CW (R1 planted-open circuit) > bioreactor (R2 plant-free-open circuit). The highest decolourisation rate was achieved by Acid Red 18 (AR18), 96%, followed by Acid Orange 7 (AO7), 67% and Congo Red (CR), 60%. The voltage outputs of the three azo dyes were ranked in the decreasing order of AR18 > AO7 > CR. The results disclosed that the decolourisation performance was significantly influenced by the azo dye structure and the moieties at the proximity of azo bond; the naphthol type azo dye with a lower number of azo bond and more electron-withdrawing groups could cause azo bond to be more electrophilic and more reductive for decolourisation. Moreover, the degradation pathway of AR18, AO7 and CR were elucidated based on the respective dye intermediate products identified through UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), and gas chromatograph-mass spectrometer (GC-MS) analyses. The CW-MFC system demonstrated high capability of decolouring azo dyes at the anaerobic anodic region and further mineralising dye intermediates at the aerobic cathodic region to less harmful or non-toxic products.


Assuntos
Áreas Alagadas , Compostos Azo , Fontes de Energia Bioelétrica , Eletrodos , Cinética , Estrutura Molecular , Águas Residuárias
19.
Chemosphere ; 244: 125459, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31790991

RESUMO

The hybrid electrochemical system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a combined technology of advanced oxidation process (AOP) which involve the hydroxyl radical formation for simultaneous degradation of organic pollutant and electricity generation. The p-nitrosodimethylaniline (RNO) spin trapping technique was applied by analyzing the RNO bleaching performance to detect the OH at the PFC and PC reactors. The presence of UV light showed higher RNO bleaching rate at the PFC reactor (11.7%) with maximum power density (Pmax = 3.14 mW cm-2). Results revealed that the optimum of maximum power density was observed at iron plate size of 30 cm2. UV light became a limiting factor in the PFC system as a power source in the PFC-PC system. Meanwhile, iron plate plays an important role to supply the soluble Fe2+ ions by oxidation process and become a suitable catalyst for in-situ production of H2O2 and OH through the PC process to degrade the organic molecules.


Assuntos
Radical Hidroxila/química , Poluentes Químicos da Água/química , Catálise , Fontes de Energia Elétrica , Eletricidade , Peróxido de Hidrogênio/química , Ferro/química , Modelos Químicos , Oxirredução , Raios Ultravioleta
20.
Chemosphere ; 214: 614-622, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30292044

RESUMO

The hybrid system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a sustainable and green technology to degrade organic pollutants and generate electricity simultaneously. In this study, three different types of photocatalysts: TiO2, ZnO and α-Fe2O3 were immobilized respectively on carbon cloth (CC), and applied as photoanodes in the photocatalytic fuel cell of this hybrid system. Photocatalytic fuel cell was employed to drive a peroxi-coagulation process by generating the external voltage accompanying with degrading organic pollutants under UV light irradiation. The degradation efficiency of Amaranth dye and power output in the hybrid system of PFC-PC were evaluated by applying different photoanode materials fabricated in this study. In addition, the effect of light on the photocurrent of three different photoanode materials was investigated. In the absence of light, the reduction of photocurrent percentage was found to be 69.7%, 17.3% and 93.2% in TiO2/CC, ZnO/CC and α-Fe2O3/CC photoanodes, respectively. A maximum power density (1.17 mWcm-2) and degradation of dye (93.8%) at PFC reactor were achieved by using ZnO/CC as photoanode. However, the different photoanode materials at PFC showed insignificant difference in dye degradation trend in the PC reactor. Meanwhile, the degradation trend of Amaranth at PFC reactor was influenced by the recombination rate, electron mobility and band gap energy of photocatalyst among different photoanode materials.


Assuntos
Corante Amaranto/metabolismo , Carbono/química , Fontes de Energia Elétrica , Eletricidade , Eletrodos , Compostos Férricos/química , Titânio/química , Óxido de Zinco/química , Peróxido de Hidrogênio , Processos Fotoquímicos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...