Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 939-945, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28606744

RESUMO

The fungus Corynespora cassiicola metabolises exogenous steroids in a unique and highly specific manner. Central to this, is the ability of this organism to functionalise substrates (androgens, progestogens) at the highly stereochemically hindered 8ß-position of the steroid nucleus. A recent study has identified that 8ß-hydroxylation occurs through inverted binding in a 9α-hydroxylase. In order to discern the metabolic fate of more symmetrical molecules, we have investigated the metabolism of a range of steroidal analogues functionalised with ring-D lactones, but differing in their functional group stereochemistry at carbon-3. Remarkably, the 3α-functionalised steroidal lactones underwent a mechanistically unique two step intramolecular cyclisation resulting in the generation of a ring-D spiro-carbolactone. This rapid rearrangement initiated with hydroxylation at carbon 14 followed by transesterification, resulting in ring contraction with formation of a butyrolactone at carbon-14. Remarkably this rearrangement was found to be highly dependent on the stereochemistry at carbon-3, with the ß-analogues only undergoing 9α-hydroxylation. The implications of these findings and their mechanistic bases are discussed.


Assuntos
Ascomicetos/metabolismo , Ciclização/fisiologia , Lactonas/metabolismo , Esteroides/metabolismo , Androgênios/metabolismo , Radioisótopos de Carbono/metabolismo , Hidroxilação/fisiologia , Progestinas/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...