Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 43(24): 3661-3669, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34013837

RESUMO

By using O3 fine bubbles that promote the mass transfer of O3 to the liquid phase and the conversion of the dissolved O3 into active oxygen species with a high oxidation potential, an improved liquid-phase oxidation technique was developed to accelerate the degradation of an organic compound at a constant O3 flow rate. By the use of a dielectric-barrier-discharge reactor, O2 was converted into O3 at an O2 flow rate of 0.56 mmol/(L·min), with 5 mol% O2-to-O3 conversion. Using a self-supporting bubble generator, O3 bubbles with an average diameter (dbbl) of 50 µm were continuously supplied into a solution in TBA (OH• scavenger) at 303 K, and the TBA being degraded. For comparison, O3 bubbles with dbbl values of 200-5000 µm were obtained using a dispersing-type generator. It was found that the minimization of bubble diameter accelerated both O3 dissolution, as a consequence of the increase in the gas-liquid interfacial area and the residence time of the bubbles, and enhanced OH• generation, because of the increase in contact probability between dissolved O3 and OH- at the minute gas-liquid interfaces, caused by the accumulation of OH- around the fine bubble surfaces. To ascertain the influence on organic compound degradation of the improved oxidation potential, bisphenol A, as a model compound, was degraded by O3 bubble injection at different dbbl values. Sequentially, the high OH• selectivity obtained by minimizing the bubble diameter can effectively achieve the rapid degradation of organic compounds and intermediates under a constant O3 flow rate.

2.
J Phys Chem A ; 119(40): 10241-53, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26371716

RESUMO

The anion-water bonds and hydrogen bonds between water molecules in X(-)(H(2)O)(n) (X = F and Cl, n = 3-7) clusters are analyzed by evaluating the charge-transfer (CT) and dispersion terms for every pair of ions and molecules with the perturbation theory based on the locally projected molecular orbitals. In particular, the relative stabilities and the bond strengths in all 11 distinct cubic X(-)(H(2)O)(7) isomers are analyzed by classifying the ligand water (L) with the numbers of the donating (n) and accepting (m) OHs as LD(n)A(m). The number of LD(0)A(2) waters determines the relative stability. It is demonstrated that the strengths of the anion-ligand bonds are strongly influenced by two other hydrogen bonds of the water molecules adjacent to the ligand. When the model theory of Mulliken's charge-transfer interaction is applied to the anion-ligand and water-water hydrogen bonds, the dependence of the bond strengths on the chains of the hydrogen bonds is explained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...