Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672523

RESUMO

Andersen-Tawil syndrome (ATS) is a multisystem channelopathy characterized by periodic paralysis, ventricular arrhythmias, prolonged QT interval, and facial dysmorphisms occurring in the first/second decade of life. High phenotypic variability and incomplete penetrance of the genes causing the disease make its diagnosis still a challenge. We describe a three-generation family with six living individuals affected by ATS. The proband is a 37-year-old woman presenting since age 16, with episodes of muscle weakness and cramps in the pre-menstrual period. The father, two brothers, one paternal uncle and one cousin also complained of cramps, muscle stiffness, and weakness. Despite normal serum potassium concentration, treatment with potassium, magnesium, and acetazolamide alleviated paralysis attacks suggesting a dyskalemic syndrome. Dysmorphic features were noted in the proband, only later. On the ECG, all but one had normal QT intervals. The affected males developed metabolic syndrome or obesity. The father had two myocardial infarctions and was implanted with an intracardiac cardioverter defibrillator (ICD). A genetic investigation by WES analysis detected the heterozygous pathogenic variant (NM_000891.2: c.652C>T, p. Arg218Trp) in the KCNJ2 gene related to ATS, confirmed by segregation studies in all affected members. Furthermore, we performed a review of cases with the same mutation in the literature, looking for similarities and divergences with our family case.


Assuntos
Alelos , Síndrome de Andersen , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização , Adulto , Feminino , Humanos , Masculino , Síndrome de Andersen/genética , Mutação , Linhagem , Canais de Potássio Corretores do Fluxo de Internalização/genética
2.
Acta Myol ; 43(1): 21-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586167

RESUMO

Glycogen Storage Disease (GSD) IXd, caused by PHKA1 gene mutations, is an X-linked rare disorder that can be asymptomatic or associated with exercise intolerance. GSD type II is an autosomal recessive disorder caused by mutations in the GAA gene that lead to severe cardiac and skeletal muscle myopathy. We report the first case of co-occurrence of type IXd and type II GSDs in a 53-year-old man with an atypical glycogen storage disease presentation consisting in myalgia in the lower limbs at both rest and after exercise and increased levels of transaminases from the age of 16. At the age of 43, the patient presented a steppage gait, inability to run and walk on his heels, hypotrophy of the pectoral and proximal muscles, reflexes not elicitable, and CK levels 3.6 times the upper reference limit. Next Generation Sequencing (NGS) identified one variant in the PHKA1 gene, c.1360A > G p.Ile454Val (exon 14) inherited by his mother, and two heterozygous variants in the GAA gene, c.784G > A (exon 4) and c.956-6T > C (exon 6). A review of GSD IXd cases reported to date in the literature is also provided.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Doença de Depósito de Glicogênio Tipo II , Doença de Depósito de Glicogênio , Masculino , Humanos , Pessoa de Meia-Idade , Doença de Depósito de Glicogênio/complicações , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio Tipo II/complicações , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Fenótipo
3.
Eur J Hum Genet ; 32(3): 342-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177406

RESUMO

DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.


Assuntos
Doenças Musculares , Distrofias Musculares , Humanos , Distroglicanas/genética , Distroglicanas/metabolismo , Haploinsuficiência , Distrofias Musculares/genética , Músculo Esquelético/patologia , Doenças Musculares/patologia
4.
Acta Myol ; 42(1): 24-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091526

RESUMO

The contiguous gene deletion syndromes (CGDS) are rare genomic disorders resulting from the deletion of large segments of DNA, manifested as the concurrence of apparently unrelated clinical features. A typical example of CGDS is Xp21 contiguous gene deletion syndrome that involves GK and its neigh-boring genes (usually DMD and NR0B1) and results in a complex phenotype, which is related to the size of deletion and involved genes. Development delay and intellectual disability are almost a constant feature of patients with CGDS. We report the case of a boy with Duchenne muscular dystrophy (DMD) and glycerol kinase deficiency (GKD) as part of the contiguous gene deletion syndrome Xp2.1, in association with intellectual disability (ID) in whom multiplex ligation-dependent probe amplification (MLPA) test first identified a hemizygous deletion involving the entire dystrophin gene. Subsequently, the array CGH study identified a maternally inherited hemizygous deletion of the Xp21.2-Xp21.1 region of approximately 3.7Mb that included both DMD and GK genes confirming the diagnosis of Xp21 CGDS. Moreover, we report a review of the cases published in the literature over the last 20 years, for which a better description of the genes involved in the syndrome was available. Intellectual disability does not appear as a constant feature of the syndrome, reiterating the concept that complex GKD syndrome results from small deletions that affect closely related but separate loci for DMD, GK and adrenal hypoplasia, rather than a single large deletion including all genes. This case highlights the importance of more in-depth genetic investigations in presence of apparently unrelated clinical findings, allowing an accurate diagnosis of contiguous gene deletion syndromes.


Assuntos
Deficiência Intelectual , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Hipoadrenocorticismo Familiar/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Glicerol Quinase/genética , Deleção de Genes
5.
Genes (Basel) ; 14(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672955

RESUMO

Dystrophinopathies are X-linked recessive muscle disorders caused by mutations in the dystrophin (DMD) gene that include deletions, duplications, and point mutations. Correct diagnosis is important for providing adequate patient care and family planning, especially at this time when mutation-specific therapies are available. We report a large single-centre study on the spectrum of DMD gene variants observed in 750 patients analyzed for suspected Duchenne (DMD) or Becker (BMD) muscular dystrophy, over the past 30 years, at the Cardiomyology and Medical Genetics of the University of Campania. We found 534 (71.21%) large deletions, 73 (9.73%) large duplications, and 112 (14.93%) point mutations, of which 44 (5.9%) were small ins/del causing frame-shifts, 57 (7.6%) nonsense mutations, 8 (1.1%) splice site and 3 (0.4%) intronic mutations, and 31 (4.13%) non mutations. Moreover, we report the prevalence of the different types of mutations in patients with DMD and BMD according to their decade of birth, from 1930 to 2020, and correlate the data to the different techniques used over the years. In the most recent decades, we observed an apparent increase in the prevalence of point mutations, probably due to the use of Next-Generation Sequencing (NGS). In conclusion, in southern Italy, deletions are the most frequent variation observed in DMD and BMD patients followed by point mutations and duplications, as elsewhere in the world. NGS was useful to identify point mutations in cases of strong suspicion of DMD/BMD negative on deletions/duplications analyses. In the era of personalized medicine and availability of new causative therapies, a collective effort is necessary to enable DMD and BMD patients to have timely genetic diagnoses and avoid late implementation of standard of care and late initiation of appropriate treatment.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Estudos Retrospectivos , Éxons , Mutação
6.
Genes (Basel) ; 15(1)2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38254922

RESUMO

Noonan syndrome is an autosomal dominant developmental disorder characterized by peculiar facial dysmorphisms, short stature, congenital heart defects, and hypertrophic cardiomyopathy. In 2001, PTPN11 was identified as the first Noonan syndrome gene and is responsible for the majority of Noonan syndrome cases. Over the years, several other genes involved in Noonan syndrome (KRAS, SOS1, RAF1, MAP2K1, BRAF, NRAS, RIT1, and LZTR1) have been identified, acting at different levels of the RAS-mitogen-activated protein kinase pathway. Recently, SPRED2 was recognized as a novel Noonan syndrome gene with autosomal recessive inheritance, and only four families have been described to date. Here, we report the first Italian case, a one-year-old child with left ventricular hypertrophy, moderate pulmonary valve stenosis, and atrial septal defect, with a clinical suspicion of RASopathy supported by the presence of typical Noonan-like facial features and short stature. Exome sequencing identified a novel homozygous loss-of-function variant in the exon 3 of SPRED2 (NM_181784.3:c.325del; p.Arg109Glufs*7), likely causing nonsense-mediated decay. Our results and the presented clinical data may help us to further understand and dissect the genetic heterogeneity of Noonan syndrome.


Assuntos
Cardiomiopatia Hipertrófica , Nanismo , Síndrome de Noonan , Humanos , Lactente , Cardiomiopatia Hipertrófica/genética , Causalidade , Éxons , Síndrome de Noonan/genética , Proteínas Repressoras , Fatores de Transcrição
7.
Sci Rep ; 12(1): 20815, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460718

RESUMO

Inherited retinal diseases (IRDs) are the leading cause of vision loss in the working-age population. We performed a retrospective epidemiological study to determine the genetic basis of IRDs in a large Italian cohort (n = 2790) followed at a single referral center. We provided, mainly by next generation sequencing, potentially conclusive molecular diagnosis for 2036 patients (from 1683 unrelated families). We identified a total of 1319 causative sequence variations in 132 genes, including 353 novel variants, and 866 possibly actionable genotypes for therapeutic approaches. ABCA4 was the most frequently mutated gene (n = 535; 26.3% of solved cases), followed by USH2A (n = 228; 11.2%) and RPGR (n = 102; 5.01%). The other 129 genes had a lower contribution to IRD pathogenesis (e.g. CHM 3.5%, RHO 3.5%; MYO7A 3.4%; CRB1 2.7%; RPE65 2%, RP1 1.8%; GUCY2D 1.7%). Seventy-eight genes were mutated in five patients or less. Mitochondrial DNA variants were responsible for 2.1% of cases. Our analysis confirms the complex genetic etiology of IRDs and reveals the high prevalence of ABCA4 and USH2A mutations. This study also uncovers genetic associations with a spectrum of clinical subgroups and highlights a valuable number of cases potentially eligible for clinical trials and, ultimately, for molecular therapies.


Assuntos
Doenças Retinianas , Humanos , Epidemiologia Molecular , Estudos Retrospectivos , Doenças Retinianas/epidemiologia , Doenças Retinianas/genética , Retina , Itália/epidemiologia , Proteínas do Olho/genética , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso
8.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555543

RESUMO

Mutations in the human desmin gene (DES) may cause both autosomal dominant and recessive cardiomyopathies leading to heart failure, arrhythmias and atrio-ventricular blocks, or progressive myopathies. Cardiac conduction disorders, arrhythmias and cardiomyopathies usually associated with progressive myopathy are the main manifestations of autosomal dominant desminopathies, due to mono-allelic pathogenic variants. The recessive forms, due to bi-allelic variants, are very rare and exhibit variable phenotypes in which premature sudden cardiac death could also occur in the first or second decade of life. We describe a further case of autosomal recessive desminopathy in an Italian boy born of consanguineous parents, who developed progressive myopathy at age 12, and dilated cardiomyopathy four years later and died of intractable heart failure at age 17. Next Generation Sequencing (NGS) analysis identified the homozygous loss-of-function variant c.634C>T; p.Arg212*, which was likely inherited from both parents. Furthermore, we performed a comparison of clinical and genetic results observed in our patient with those of cases so far reported in the literature.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Miopatias Congênitas Estruturais , Masculino , Humanos , Criança , Adolescente , Desmina/genética , Músculo Esquelético/patologia , Cardiomiopatias/patologia , Miopatias Congênitas Estruturais/patologia , Mutação , Arritmias Cardíacas/patologia , Insuficiência Cardíaca/patologia , Linhagem
9.
Diagnostics (Basel) ; 11(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359301

RESUMO

Pathogenic variants in the MKS1 gene are responsible for a ciliopathy with a wide spectrum of clinical manifestations ranging from Meckel and Joubert syndrome (JBTS) to Bardet-Biedl syndrome, and involving the central nervous system, liver, kidney, skeleton, and retina. We report a 39-year-old male individual presenting with isolated Retinitis Pigmentosa (RP), as assessed by full ophthalmological evaluation including Best-Corrected Visual Acuity measurements, fundus examination, Goldmann Visual Field test, and full-field Electroretinography. A clinical exome identified biallelic nonsense variants in MKS1 that prompted post-genotyping investigations for systemic abnormalities of ciliopathy. Brain magnetic resonance imaging revealed malformations of the posterior cranial fossa with the 'molar tooth sign' and cerebellar folia dysplasia, which are both distinctive features of JBTS. No other organ or skeletal abnormalities were detected. This case illustrates the power of clinical exome for the identification of the mildest forms of a disease spectrum, such as a mild JBTS with RP in the presented case of an individual carrying biallelic truncating variants in MKS1.

10.
Neurol Genet ; 7(5): e619, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34386585

RESUMO

BACKGROUND AND OBJECTIVES: To clinically, genetically, and histopathologically characterize patients presenting with an unusual combination of distal myopathy and facial weakness, without involvement of upper limb or shoulder girdle muscles. METHODS: Two families with a novel form of actininopathy were identified. Patients had been followed up over 10 years. Their molecular genetic diagnosis was not clear after extensive investigations, including analysis of candidate genes and FSHD1-related D4Z4 repeats. RESULTS: Patients shared a similar clinical phenotype and a common pattern of muscle involvement. They presented with a very slowly progressive myopathy involving anterior lower leg and facial muscles. Muscle MRI finding showed complete fat replacement of anterolateral compartment muscles of the lower legs with variable involvement of soleus and gastrocnemius but sparing thigh muscles. Muscle biopsy showed internalized nuclei, myofibrillar disorganization, and rimmed vacuoles. High-throughput sequencing identified in each proband a heterozygous single nucleotide deletion (c.2558del and c.2567del) in the last exon of the ACTN2 gene. The deletions are predicted to lead to a novel but unstructured slightly extended C-terminal amino acid sequence. DISCUSSION: Our findings indicate an unusual form of actininopathy with specific molecular and clinical features. Actininopathy should be considered in the differential diagnosis of distal myopathy combined with facial weakness.

11.
Clin Kidney J ; 14(6): 1545-1551, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34084454

RESUMO

BACKGROUND: Urine concentrating defect is a common dysfunction in ciliopathies, even though its underlying mechanism and its prognostic meaning are largely unknown. This study assesses renal function in a cohort of 54 Bardet-Biedl syndrome (BBS) individuals and analyses whether renal hyposthenuria is the result of specific tubule dysfunction and predicts renal disease progression. METHODS: The estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (ACR) and maximum urine osmolality (max-Uosm) were measured in all patients. Genetic analysis was conducted in 43 patients. Annual eGFR decline (ΔeGFR) was measured in patients with a median follow-up period of 6.5 years. Urine aquaporin-2 (uAQP2) excretion was measured and the furosemide test was performed in patients and controls. RESULTS: At baseline, 33 (61.1%), 12 (22.2%) and 9 (16.7%) patients showed an eGFR >90, 60-90 and <60 mL/min/1.73 m2, respectively; 27.3% showed an ACR >30 mg/g and 55.8% of patients showed urine concentrating defect in the absence of renal insufficiency. Baseline eGFR, but not max-Uosm, correlated negatively with age. Conversely, truncating mutations affected max-Uosm and showed a trend towards a reduction in eGFR. Max-Uosm correlated with ΔeGFR (P < 0.005), suggesting that urine concentrating defect may predict disease progression. uAQP2 excretion and Na+ and Cl- fractional excretion after furosemide did not differ between hyposthenuric patients and controls, suggesting that specific collecting duct and thick ascending limb dysfunctions are unlikely to play a central role in the pathogenesis of hyposthenuria. CONCLUSIONS: Hyposthenuria is a warning sign predicting poor renal outcome in BBS. The pathophysiology of this defect is most likely beyond defective tubular function.

12.
Genes (Basel) ; 12(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494189

RESUMO

Next generation sequencing (NGS) has changed our approach to diagnosis of genetic disorders. Nowadays, the most comprehensive application of NGS is whole genome sequencing (WGS) that is able to detect virtually all DNA variations. However, even after accurate WGS, many genetic conditions remain unsolved. This may be due to the current NGS protocols, based on DNA fragmentation and short reads. To overcome these limitations, we applied a linked-read sequencing technology that combines single-molecule barcoding with short-read WGS. We were able to assemble haplotypes and distinguish between alleles along the genome. As an exemplary case, we studied the case of a female carrier of X-linked muscular dystrophy with an unsolved genetic status. A deletion of exons 16-29 in DMD gene was responsible for the disease in her family, but she showed a normal dosage of these exons by Multiplex Ligation-dependent Probe Amplification (MLPA) and array CGH. This situation is usually considered compatible with a "non-carrier" status. Unexpectedly, the girl also showed an increased dosage of flanking exons 1-15 and 30-34. Using linked-read WGS, we were able to distinguish between the two X chromosomes. In the first allele, we found the 16-29 deletion, while the second allele showed a 1-34 duplication: in both cases, linked-read WGS correctly mapped the borders at single-nucleotide resolution. This duplication in trans apparently restored the normal dosage of exons 16-29 seen by quantitative assays. This had a dramatic impact in genetic counselling, by converting a non-carrier into a double carrier status prediction. We conclude that linked-read WGS should be considered as a valuable option to improve our understanding of unsolved genetic conditions.


Assuntos
Distrofina/genética , Rearranjo Gênico , Distrofia Muscular de Duchenne/genética , Sequenciamento Completo do Genoma , Criança , Hibridização Genômica Comparativa , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único
13.
BMC Neurol ; 20(1): 327, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873259

RESUMO

BACKGROUND: Mutations in RAB39B at Xq28 causes a rare form of X-linked intellectual disability (ID) and Parkinson's disease. Neurofibromatosis type 1 (NF1) is caused by heterozygous mutations in NF1 occurring de novo in about 50% of cases, usually due to paternal gonadal mutations. This case report describes clinical and genetic findings in a boy with the occurrence of two distinct causative mutations in NF1 and RAB39B explaining the observed phenotype. CASE PRESENTATION: Here we report a 7-year-old boy with multiple café-au-lait macules (CALMs) and freckling, severe macrocephaly, peculiar facial gestalt, severe ID with absent speech, epilepsy, autistic traits, self-harming, and aggressiveness. Proband is an only child born to a father aged 47. Parents did not present signs of NF1, while a maternal uncle showed severe ID, epilepsy, and tremors.By RNA analysis of NF1, we identified a de novo splicing variant (NM_000267.3:c.6579+2T>C) in proband, which explained NF1 clinical features but not the severe ID, behavioral problems, and aggressiveness. Family history suggested an X-linked condition and massively parallel sequencing of X-exome identified a novel RAB39B mutation (NM_171998.2:c.436_447del) in proband, his mother, and affected maternal uncle, subsequently validated by Sanger sequencing in these and other family members. CONCLUSIONS: The case presented here highlights how concurrent genetic defects should be considered in NF1 patients when NF1 mutations cannot reasonably explain all the observed clinical features.


Assuntos
Transtorno Autístico/diagnóstico , Deficiência Intelectual/genética , Neurofibromatose 1/genética , Proteínas rab de Ligação ao GTP/genética , Manchas Café com Leite/diagnóstico , Manchas Café com Leite/genética , Criança , Exoma , Família , Humanos , Masculino , Mutação , Neurofibromatose 1/diagnóstico , Fenótipo
14.
Genes (Basel) ; 10(8)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370276

RESUMO

Pigmentary manifestations can represent an early clinical sign in children affected by Neurofibromatosis type 1 (NF1), Legius syndrome, and other neurocutaneous disorders. The differential molecular diagnosis of these pathologies is a challenge that can now be met by combining next generation sequencing of target genes with concurrent second-level tests, such as multiplex ligation-dependent probe amplification and RNA analysis. We clinically and genetically investigated 281 patients, almost all pediatric cases, presenting with either NF1 (n = 150), only pigmentary features (café au lait macules with or without freckling; (n = 95), or clinical suspicion of other RASopathies or neurocutaneous disorders (n = 36). The causative variant was identified in 239 out of the 281 patients analyzed (85.1%), while 42 patients remained undiagnosed (14.9%). The NF1 and SPRED1 genes were mutated in 73.3% and 2.8% of cases, respectively. The remaining 8.9% carried mutations in different genes associated with other disorders. We achieved a molecular diagnosis in 69.5% of cases with only pigmentary manifestations, allowing a more appropriate clinical management of these patients. Our findings, together with the increasing availability and sharing of clinical and genetic data, will help to identify further novel genotype-phenotype associations that may have a positive impact on patient follow-up.


Assuntos
Manchas Café com Leite/genética , Mutação , Neurofibromatose 1/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Manchas Café com Leite/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...