Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tradit Complement Med ; 14(4): 391-402, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035687

RESUMO

Red rice (Oryza sativa L.) consumption has grown recently, partly due to its potential health benefits in several disease prevention. The impact of red rice bran aqueous extract (RRBE) on intestinal glucose uptake and diabetes mellitus (DM) progression has not been thoroughly investigated. This study aimed to evaluate the effect of RRBE on ex vivo intestinal glucose absorption and its potential as an antihyperglycemic compound using a high-fat diet and streptozotocin (STZ)-induced diabetic rats. High-fat diet/STZ-induced diabetic rats were supplemented with either 1000 mg/kg body weight (BW) of RRBE, 70 mg/kg BW of metformin (Met), or a combination of RRBE and Met for 3 months. Plasma parameters, intestinal glucose transport, morphology, liver and soleus muscle glycogen accumulation were assessed. Treatment with RRBE, metformin, or combination markedly reversed hyperglycemia, hypertriglyceridemia, insulin resistance, and pancreatic morphology changes associated with T2DM. Correspondingly, all supplements effectively downregulated glucose transporters, resulting in a reduction of intestinal glucose transport-additionally, liver and soleus muscle glycogen accumulation was reduced in RRBE + Met treated group. Taken together, RRBE potentially suppressed intestinal glucose transporters' function and expression, reducing diabetic status.

2.
Food Chem Toxicol ; 190: 114843, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944142

RESUMO

Mulberry (Morus alba L) fruit is traditionally used in Chinese medicine and has several beneficial effects, such as hypoglycemic, hypolipidemic, and anti-oxidative effects. We previously developed the synbiotic mulberry (SM) containing probiotic Lactobacilli, prebiotic inulin, and mulberry powder. In food supplement development, toxicity is the most important criterion in food and drug regulations before commercialization. Thus, this study aimed to investigate the subchronic toxicity of SM in male and female Wistar rats to evaluate its biosafety. The subchronic toxicity study was conducted by daily oral administration of SM at doses of 250, 500, and 1000 mg/kgBW for 90 days. Male and female rats were evaluated for body weight, organ coefficients, biochemical and hematological parameters, and vital organ histology. The results showed no mortality or toxic changes in the subchronic toxicity study. These results suggested that no observed adverse effect level (NOAEL) of SM in male and female rats has been considered at 1000 mg/kgBW for subchronic toxicity study.


Assuntos
Morus , Simbióticos , Animais , Feminino , Masculino , Ratos , Administração Oral , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Morus/química , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar , Simbióticos/administração & dosagem , Testes de Toxicidade Subcrônica
3.
Sci Rep ; 14(1): 7994, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580687

RESUMO

Cordyceps militaris (L.) Link (C. militaris) contains various beneficial substances, including polysaccharides (galactomannan), nucleotides (adenosine and cordycepin), cordycepic acid, amino acids, and sterols (ergosterol and beta-sitosterol). It also contains other essential nutrients, such as protein, vitamins (E, K, B1, B2, and B12), and minerals (potassium, sodium, calcium, magnesium, iron, zinc, and selenium). Due to the numerous health benefits of supplements and products containing C. militaris extract, their popularity has increased. However, the immunostimulant effect of C. militaris remains unclear. Therefore, this study developed a functional beverage from the submerged fermentation of C. militaris (FCM) and aimed to investigate the potential of FCM in healthy male and female volunteers in Phayao Province, Thailand. This study provides essential information for the development of healthy drink products. Healthy men and women were provided either FCM containing 2.85 mg of cordycepin or placebo for 8 weeks (n = 10 for each gender). The immune cell markers, immunoglobulins, and safety parameters were assessed initially at baseline and at 4 and 8 weeks. The NK cell activity markedly increased in the male FCM group from baseline (p = 0.049) to 4 weeks after receiving FCM. Compared with those in the placebo group, the NK activity in women who received FCM for 8 weeks significantly increased (p = 0.023) from baseline. Within-group analysis revealed that the IL-1ß levels were markedly reduced in the male FCM group (p = 0.049). Furthermore, the IL-6 levels decreased from baseline in the female FCM group (p = 0.047). The blood sugar, lipid, and safety indices were not different between the experimental groups. FCM can potentially be developed as an immune-boosting supplement without liver, kidney, or blood component toxicity.


Assuntos
Cordyceps , Adulto , Humanos , Masculino , Feminino , Cordyceps/química , Desoxiadenosinas/farmacologia , Adenosina/metabolismo , Adjuvantes Imunológicos/farmacologia , Fígado , Imunidade
4.
Bioorg Med Chem Lett ; 93: 129437, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549851

RESUMO

Putative asperidine B is an unnatural 2,6-disubstituted piperidin-3-ol and a structural isomer of (+)-preussin, a well-known pyrrolidin-3-ol alkaloid. This work reports the first enantioselective synthesis of putative asperidine B and its desmethyl analogue via a chiron approach starting from d-isoascorbic acid as well as evaluation of their free-radical scavenging, antidiabetic, and anti-hyperlipidemic activities. Both putative asperidine B and its desmethyl analogue markedly reduced the total reactive oxygen species (ROS) without cytotoxicity in hepatocellular carcinoma (HepG2) cells. The desmethyl analogue was a potent inducer for two antioxidant gene expression, glutathione peroxidase and superoxide dismutase, whereas putative asperidine B only induced superoxide dismutase. In addition, putative asperidine B exerted potent antidiabetic activity via α-glucosidase inhibition (IC50 = 0.143 ± 0.001 mg/mL) comparable to that of acarbose, an antidiabetic drug. Consistent with the parent asperidine B (preussin), both putative asperidine B and its desmethyl analogue inhibited cholesterol absorption in the intestinal Caco-2 cells. These novel and promising antioxidant, antidiabetic, and lipid-lowering effects of piperidin-3-ols could offer a starting point for this class of compounds for obesity and diabetic drug discovery.


Assuntos
Antioxidantes , Hipoglicemiantes , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/química , Células CACO-2 , Extratos Vegetais/química , Superóxido Dismutase/metabolismo , Lipídeos
5.
Heliyon ; 9(3): e13917, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873494

RESUMO

Coffee pulp (CP) is a coffee byproduct that contains various active ingredients, namely, chlorogenic acid (CGA) and caffeine. These active compounds show several benefits, including antihyperlipidemia, antioxidants, and anti-inflammation. However, the anti-inflammatory properties of Coffea pulp extract (CPE) are unknown. This work determined the impact of CPE on lipopolysaccharide (LPS)-activated murine macrophage cells and the molecular mechanism behind this action. RAW 264.7 cells were exposed to varying doses of CPE with or without LPS. Inflammatory markers and their mechanism were studied. CPE therapy has been shown to suppress the synthesis of inflammatory cytokines and mediators, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1ß, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Finally, CPE inactivated the nuclear factor-kappa B (NF-κB) and MAPK signaling pathways. Consequently, CPE might be used as a nutraceutical to treat inflammation and its related disorders.

6.
Fundam Clin Pharmacol ; 37(4): 833-842, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36843181

RESUMO

Buspirone, a cationic drug, is an anxiolytic and antidepressant drug. However, whether buspirone and its metabolites are interacted with organic cationic transporter remains uncertain. In this study, we examined the interaction of buspirone and its major metabolites 1-(2-pyrimidinyl)piperazine (1-PP) and 6-hydroxybuspirone (6'-OH-Bu) with hOCTs using human hepatocellular carcinoma (HepG2), human colorectal adenocarcinoma (Caco-2) cells, and S2 cells expressing OCT1 (S2hOCT1), 2 (S2hOCT2), or 3 (S2hOCT3). Coadministration of buspirone and fluorescent 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+ ) was examined using HepG2 cells, and [3 H]-1-methyl-4-phenylpyridinium (MPP+ ) transport was assessed in S2 cell overexpressing hOCTs. The results showed that ASP+ transport was suppressed by buspirone with an IC50 of 26.3 ± 2.9 µM without any cytotoxic effects in HepG2 expressing hOCTs cells. Consistently, buspirone strongly inhibited [3 H]-MPP+ uptake by S2hOCT1, S2hOCT2, and S2hOCT3 cells with an IC50s of 89.0 ± 1.3 µM, 43.7 ± 7.5 µM, and 20.4 ± 1.0 µM, respectively. Nonetheless, 6'-OH-Bu and 1-PP caused weak or no inhibition on ASP+ and [3 H]-MPP+ transport. These findings suggest the potential interaction of buspirone with organic cation drugs that are handled by hOCT3. However, further clinical relevance is needed to support these findings for preventing drug-drug interaction in patients who take prescribed drugs together with buspirone.


Assuntos
Buspirona , Proteínas de Transporte de Cátions Orgânicos , Humanos , Buspirona/farmacologia , Células CACO-2 , Transportador 2 de Cátion Orgânico , Transportador 1 de Cátions Orgânicos/metabolismo , Cátions/metabolismo
7.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36015103

RESUMO

Isolated secondary metabolites asperidine B (preussin) and asperidine C, produced by the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178, were found to exhibit inhibitory effects against 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase and oxidative stress in an in vitro assay. Whether or not the known pyrrolidine asperidine B and the recently isolated piperidine asperidine C have lipid-lowering effects remains unknown. Thus, this study aimed to investigate the hypocholesterolemic effects of asperidines B and C and identify the mechanisms involved in using in vitro, ex vivo, and in vivo models. The results show that both compounds interfered with cholesterol micelle formation by increasing bile acid binding capacity, similar to the action of the bile acid sequestrant drug cholestyramine. However, only asperidine B, but not asperidine C, was found to inhibit cholesterol uptake in Caco-2 cells by up-regulating LXRα without changing cholesterol transporter NPC1L1 protein expression. Likewise, reduced cholesterol absorption via asperidine-B-mediated activation of LXRα was also observed in isolated rat jejunal loops. Asperidine B consistently decreases plasma cholesterol absorption, similar to the effect of ezetimibe in rats. Therefore, asperidine B, the pyrrolidine derivative, has therapeutic potential to be developed into a type of cholesterol absorption inhibitor for the treatment of hypercholesterolemia.

8.
J Microbiol Biotechnol ; 32(8): 1003-1010, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-35879283

RESUMO

The purpose of this study was to examine the phytochemical compounds and antibacterial activity of Coffea robusta leaf extract (RLE). The results indicated that chlorogenic acid (CGA) is a major component of RLE. The minimum inhibitory concentrations (MICs) of RLE against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella Typhimurium were 6.25, 12.5, 12.5, and 12.5 mg/ml, respectively. RLE effectively damages the bacterial cell membrane integrity, as indicated by the high amounts of proteins and nucleic acids released from the bacteria, and disrupts bacterial cell membrane potential and permeability, as revealed via fluorescence analysis. Cytotoxicity testing showed that RLE is slightly toxic toward HepG2 cells at high concentration but exhibited no toxicity toward Caco2 cells. The results from the present study suggest that RLE has excellent potential applicability as an antimicrobial in the food industry.


Assuntos
Coffea , Antibacterianos , Bacillus subtilis , Células CACO-2 , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais
9.
Foods ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681372

RESUMO

Type I interferons (IFNs-I) are inflammatory cytokines that play an essential role in the pathogenesis of inflammation and autoimmune diseases. Signaling through nucleic acid sensors causes the production of IFNs-I. A stimulator of interferon genes (STING) is a DNA sensor that signals transduction, leading to the production of IFNs-I after their activation. This study aims to determine the anti-inflammatory effects of red rice bran extract (RRBE) on macrophages through the activation of STING signaling. RAW264.7 macrophage cells were stimulated with STING agonist (DMXAA) with and without RRBE. Cells and supernatant were collected. The level of mRNA expression was determined by qPCR, and inflammatory cytokine production was investigated by ELISA. The results indicate that RRBE significantly lowers the transcription of STING and interferon-stimulated genes (ISGs). Moreover, RRBE suppresses the phosphorylation of STING, leading to a decrease in the expression of Irf3, a transcription factor that initiates IFN-I signaling. Our results provide evidence that red rice bran extract may be a protective compound for inflammatory diseases by targeting STING signaling.

10.
Molecules ; 27(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744910

RESUMO

Crocodile oil (CO) is generated from the fatty tissues of crocodiles as a by-product of commercial aquaculture. CO is extensively applied in the treatment of illnesses including asthma, emphysema, skin ulcers, and cancer, as well as wound healing. Whether CO has anti-inflammatory properties and encourages an immune response remains uncertain. The impact of CO on inflammatory conditions in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mechanisms behind it were examined in this work. Cells were treated with 0.125-2% CO dissolved in 0.5% propylene glycol with or without LPS. The production and expression of inflammatory cytokines and mediators were also examined in this research. CO reduced the synthesis and gene expression of interleukin-6 (IL-6). Consistently, CO inhibited the expression and synthesis of inflammatory markers including cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nitric oxide (NO), and nuclear factor kappa B (NF-κB). Furthermore, CO reduced the effects of DNA damage. CO also increased the cell-cycle regulators, cyclins D2 and E2, which improved the immunological response. CO might thus be produced as a nutraceutical supplement to help avoid inflammatory diseases.


Assuntos
Jacarés e Crocodilos , Lipopolissacarídeos , Animais , Ciclo-Oxigenase 2/metabolismo , Imunidade , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óleos , Células RAW 264.7
11.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641278

RESUMO

BACKGROUND: Caulerpa lentillifera (CL) is a green seaweed, and its edible part represents added value as a functional ingredient. CL was dried and extracted for the determination of its active compounds and the evaluation of its biological activities. The major constituents of CL extract (CLE), including tannic acid, catechin, rutin, and isoquercetin, exhibited beneficial effects, such as antioxidant activity, anti-diabetic activity, immunomodulatory effects, and anti-cancer activities in in vitro and in vivo models. Whether CLE has an anti-inflammatory effect and immune response remains unclear. METHODS: This study examined the effect of CLE on the inflammatory status and immune response of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mechanisms involved therein. RAW264.7 cells were treated with different concentrations of CLE (0.1-1000 µg/mL) with or without LPS (1 µg/mL) for 24 h. Expression and production of the inflammatory cytokines, enzymes, and mediators were evaluated. RESULTS: CLE suppressed expression and production of the pro-inflammatory cytokines IL-6 and TNF-α. Moreover, CLE inhibited expression and secretion of the inflammatory enzyme COX-2 and the mediators PGE2 and NO. CLE also reduced DNA damage. Furthermore, CLE stimulated the immune response by modulating the cell cycle regulators p27, p53, cyclin D2, and cyclin E2. CONCLUSIONS: CLE inhibits inflammatory responses in LPS-activated macrophages by downregulating inflammatory cytokines and mediators. Furthermore, CLE has an immunomodulatory effect by modulating cell cycle regulators.


Assuntos
Anti-Inflamatórios/farmacologia , Catequina/farmacologia , Caulerpa/química , Quercetina/análogos & derivados , Rutina/farmacologia , Taninos/farmacologia , Animais , Catequina/isolamento & purificação , Citocinas/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Camundongos , Quercetina/isolamento & purificação , Quercetina/farmacologia , Células RAW 264.7 , Rutina/isolamento & purificação , Taninos/isolamento & purificação
12.
Exp Ther Med ; 22(5): 1223, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34603520

RESUMO

The present study assessed the effect of freshwater hybrid catfish oil (FFO) on the inflammatory status of lipopolysaccharide (LPS)-stimulated RAW264.7 cells and investigated the underlying mechanisms. RAW264.7 cells were supplemented with various concentrations [0.125-2% in 0.5% propylene glycol (v/v)] of FFO with or without LPS (1 µg/ml) for 24 h. Inflammatory cytokines and mediators were quantified using ELISA and reverse transcription-quantitative PCR. The results revealed that FFO treatment inhibited the secretion and mRNA expression of the pro-inflammatory cytokines IL-6, IL-1ß, TNF-α. In line with this, FFO suppressed the expression and secretion of the inflammatory mediators cyclooxygenase-2 and prostaglandin E2. FFO also reduced apoptotic body formation and DNA damage. Correspondingly, FFO enhanced the immune response by modulating the cell cycle regulators p53, cyclin D2 and cyclin E2. Accordingly, FFO may be developed as a nutraceutical product to prevent inflammation.

13.
Biomed Rep ; 15(3): 73, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34405045

RESUMO

The major constituents of Coffea arabica (coffee), including caffeine, chlorogenic acid and caffeic acid, exhibit antihyperglycemic properties in in vitro and in vivo models. However, whether Coffea arabica bean extract (CBE) regulates glucose uptake activity and the underlying mechanisms involved remain unclear. The aim of the present study was to examine the effects of CBE on glucose absorption and identify the mechanisms involved using an in vitro model. The uptake of a fluorescent glucose analog into Caco-2 colorectal adenocarcinoma cells was determined. The expression levels of sodium glucose co-transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated. In addition, glycoside hydrolase enzyme activity was investigated. It was observed that CBE inhibited disaccharidase enzyme activity. Furthermore, CBE exerted an inhibitory effect on intestinal glucose absorption by downregulating SGLT1- and GLUT2-mediated 5' AMP-activated protein kinase phosphorylation and suppressing hepatocyte nuclear factor 1α expression. These data suggest that CBE may attenuate glucose absorption and may have potentially beneficial antihyperglycemic effects in the body; however, the mechanisms underlying the effects of CBE must be elucidated through further investigation.

14.
Molecules ; 26(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800673

RESUMO

Coffea arabica pulp (CP) is a by-product of coffee processing. CP contains polyphenols that have exhibited beneficial effects, including antioxidant and lipid-lowering effects, as well as enhanced insulin sensitivity, in in vitro and in vivo models. How polyphenols, as found in CP aqueous extract (CPE), affect type 2 diabetes (T2D) has not been investigated. Thus, the present study examined the potential antidiabetic, antioxidant, and renoprotective effects of CPE-rich polyphenols, using an experimental model of T2D in rats induced by a high-fat diet and a single low dose of streptozotocin. The T2D rats received either 1000 mg/kg body weight (BW) of CPE, 30 mg/kg BW of metformin (Met), or a combination treatment (CPE + Met) for 3 months. Plasma parameters, kidney morphology and function, and renal organic transport were determined. Significant hyperglycemia, hypertriglyceridemia, insulin resistance, increased renal lipid content and lipid peroxidation, and morphological kidney changes related to T2D were restored by both CPE and CPE + Met treatments. Additionally, the renal uptake of organic cation, 3H-1-methyl-4-phenylpyridinium (MPP+), was reduced in T2D, while transport was restored by CPE and CPE + Met, through an up-regulation of antioxidant genes and protein kinase Cα deactivation. Thus, CPE has antidiabetic and antioxidant effects that potentially ameliorate kidney function in T2D by preserving renal organic cation transport through an oxidative stress pathway.


Assuntos
Antioxidantes/farmacologia , Coffea/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Polifenóis/farmacologia , Animais , Antioxidantes/isolamento & purificação , Proteínas de Transporte/agonistas , Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica/efeitos adversos , Combinação de Medicamentos , Sinergismo Farmacológico , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hipoglicemiantes/isolamento & purificação , Resistência à Insulina , Transporte de Íons/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Ratos , Ratos Wistar , Estreptozocina/administração & dosagem
15.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920678

RESUMO

Isolated α,ß-dehydromonacolin S (C5) from soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178 was recently shown to exhibit an inhibitory effect against 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity in vitro. In this study, we investigated the effects of C5 on lipid-lowering, hepatic steatosis, and hepatic gluconeogenesis in vivo. The control rats received a daily dose of either vehicle or C5 at 10 mg/kg, while the high-fat diet-induced obese (HFD) rats were administered vehicle; 1, 3, or 10 mg/kg C5; or 10 mg/kg lovastatin (LO) for 6 weeks. C5 significantly improved dyslipidemia and diminished liver enzymes, HMGR activity, insulin resistance, and hepatic steatosis, comparable to LO without any hepatotoxicity and nephrotoxicity in HFD rats. A higher efficacy of C5 in lipid-lowering activity and anti-hepatic steatosis was associated with a significant decrease in genes involved in lipid metabolism including sterol regulatory element binding protein (SREBP) 1c, SREBP2, liver X receptor alpha (LXRα), and peroxisome proliferator-activated receptor (PPAR) gamma (PPARγ) together with an increase in the PPAR alpha (PPARα). Correspondingly, C5 was able to down-regulate the lipid transporters cluster of differentiation 36 (CD36) and Niemann-Pick C1 Like 1 (NPC1L1), increase the antioxidant superoxide dismutase gene expression, and decrease the proinflammatory cytokines, tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1ß). Impairment of hepatic gluconeogenesis and insulin resistance in HFD rats was restored by C5 through down-regulation of the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), and the activation of AMP-dependent kinase serine (AMPK) and serine/threonine protein kinase B (Akt). Collectively, this novel C5 may be a therapeutic option for treating dyslipidemia, hepatic steatosis, and reducing potential risk for diabetes mellitus.

16.
Molecules ; 26(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669133

RESUMO

This study investigated the effects of Tiliacora triandra (Colebr.) Diels aqueous extract (TTE) on hepatic glucose production in hepatocellular carcinoma (HepG2) cells and type 2 diabetic (T2DM) conditions. HepG2 cells were pretreated with TTE and its major constituents found in TTE, epicatechin (EC) and quercetin (QC). The hepatic glucose production was determined. The in vitro data were confirmed in T2DM rats, which were supplemented daily with 1000 mg/kg body weight (BW) TTE, 30 mg/kg BW metformin or TTE combined with metformin for 12 weeks. Results demonstrate that TTE induced copper-zinc superoxide dismutase, glutathione peroxidase and catalase genes, similarly to EC and QC. TTE decreased hepatic glucose production by downregulating phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and increasing protein kinase B and AMP-activated protein kinase phosphorylation in HepG2 cells. These results correlated with the antihyperglycemic, antitriglyceridemic, anti-insulin resistance, and antioxidant activities of TTE in T2DM rats, similar to the metformin and combination treatments. Consistently, impairment of hepatic gluconeogenesis in T2DM rats was restored after single and combined treatments by reducing PEPCK and G6Pase genes. Collectively, TTE could potentially be developed as a nutraceutical product to prevent glucose overproduction in patients with obesity, insulin resistance, and diabetes who are being treated with antidiabetic drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Menispermaceae/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Glucose/biossíntese , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Injeções Intraperitoneais , Masculino , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/administração & dosagem , Células Tumorais Cultivadas , Água/química
17.
Expert Rev Respir Med ; 14(5): 527-531, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32156169

RESUMO

Background: Air pollution is a global problem and also linked to respiratory diseases. Wildfire smog is a major cause of air pollution in the upper northern area of Thailand. Thus, in the current study, we examined whether long-term exposure to wildfire smog induces lung function changes in a population from the upper northern area of Thailand.Methods: The lung function of 115 participants with long-term exposure smog was determined using peak flow meter.Results: Long-term smoke exposure participants decreased FEV1 (forced expiratory volume in 1 second)/FVC (forced vital capacity) ratio (56.49 ± 23.88 in males and 56.29 ± 28.23 in females) compared with general Thai population. Moreover, the reduction of FVC, FEV1, and peak expiratory flow rate (PEFR) values also showed in both male and female subjects. These results suggest that long-term smoke exposure induces obstructive lung abnormality. Moreover, itchy/watery nose, cough, phlegm, and chest pain also reported in these subjects.Conclusion: Wildfire smog could be induced respiratory pathway inflammation and easily collapsible respiratory airways.


Assuntos
Pneumopatias/induzido quimicamente , Pulmão/fisiopatologia , Testes de Função Respiratória , Smog/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Tosse , Feminino , Volume Expiratório Forçado , Humanos , Pneumopatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Pico do Fluxo Expiratório , Capacidade Vital , Incêndios Florestais
18.
Fundam Clin Pharmacol ; 34(3): 365-379, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31883148

RESUMO

Human organic cation transporter 1 (hOCT1) and human organic cation transporter 3 (hOCT3) are highly expressed in hepatocytes and play important roles in cationic drug absorption, distribution, and elimination. A previous study demonstrated that downregulation of hOCT1 and hOCT3 mRNA was related to hepatocellular carcinoma (HepG2) prognosis and severity. Whether these transporters expressed in HepG2 cells serve for cationic drug delivery has not been investigated. Besides radioactive transport, options for assessing hOCTs in hepatocytes are limited. This study clarified the significant roles of hOCTs in HepG2 by comparing cationic fluorescent 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+ ) with traditional [3 H]-1-methyl-4-phenylpyridinium (MPP+ ). The results showed ASP+ was preferably transported into HepG2 compared to [3 H]-MPP+ with high affinity and a high maximal transport rate. Selective transport of ASP+ mediated by hOCTs was influenced by extracellular pH, temperature, and membrane depolarization, corresponding to hOCT1 and hOCT3 expressions. Furthermore, transport of cationic drugs, metformin, and paclitaxel in HepG2 cells was blunted by OCT inhibitors, suggesting that hOCT1 and hOCT3 expressed in HepG2 cells exhibit notable impacts on cationic drug actions. The fluorescent ASP+ -based in vitro model may also provide a rapid and powerful analytical tool for further screening of cationic drug actions and interactions with hOCTs, particularly hOCT1 and hOCT3 in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cátions/metabolismo , Neoplasias Hepáticas/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Compostos de Piridínio/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Metformina/metabolismo , Paclitaxel/metabolismo
19.
Biol Pharm Bull ; 42(11): 1814-1822, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31685765

RESUMO

Spirogyra neglecta (SN), commonly named "Tao" in Thai, is a genus of filamentous green macroalgae. SN contains polyphenols such as isoquercetin, catechin, hydroquinone and kaempferol. These constituents exhibit beneficial effects including anti-oxidant, anti-gastric ulcer, anti-hyperglycaemia and anti-hyperlipidaemia in both in vitro and in vivo models. Whether SN extract (SNE) has an anti-inflammatory effect in vivo remains unclear. This study examined the effect of SNE on renal function and renal organic transport in lipopolysaccharide (LPS)-induced renal inflammation in rats. Rats were randomised and divided into normal saline (NS), NS supplemented with 1000 mg/kg body weight (BW) of SNE (NS + SNE), intraperitoneally injected with 12 mg/kg BW of LPS and LPS treated with 1000 mg/kg BW of SNE (LPS + SNE). Biochemical parameters in serum and urine, lipid peroxidation concentration, kidney function and renal organic anion and cation transports were determined. LPS-injected rats developed renal injury and inflammation by increasing urine microalbumin, total malondialdehyde (MDA) and inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1ß protein expression, respectively. In addition, uptake of renal organic anion, [3H]-oestrone sulphate (ES), was reduced in LPS-injected rats together with increased expression of organic anion transporter 3 (Oat3). However, the renal injury and inflammation, as well as impaired Oat3 function and protein expression, were restored in LPS + SNE rats. Accordingly, SNE could be developed as nutraceutical product to prevent inflammation-induced nephrotoxicity.


Assuntos
Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Extratos Vegetais/farmacologia , Spirogyra/química , Animais , Citocinas/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Masculino , Malondialdeído , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ratos , Ratos Wistar
20.
Res Pharm Sci ; 14(3): 190-200, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31160896

RESUMO

Siamese neem (Azadirachta indica A. Juss var. siamensis Valeton) (A. indica) leaf extract, a traditional ayurvedic medicine, has been reported to exhibit antipyretic, antibacterial, antidyslipidemic, and antihyperglycemia effects. This study investigated the mechanism of hypocholesterolemic effect of methanolic extract of Siamese neem flowers in in vitro studies and in Caco-2 cells. Pancreatic cholesterol esterase and 3-hydroxy 3-methylglutaryl-CoA (HMG-CoA) reductase activities were assessed. Cholesterol micelle formation was prepared for in vitro cholesterol physicochemical property analyses, micelle size and solubility, and transport of cholesterol into the Caco-2 cells. The expression of niemann-pick C1 like 1 (NPC1L1), and its major regulator, peroxisome proliferator-activated receptor δ (PPARδ), were determined by western blot and real time polymerase chain reaction, respectively. A. indica flower extract inhibited pancreatic cholesterol esterase activity and increased cholesterol micelles size. Uptake of cholesterol into Caco-2 cells was inhibited by A. indica flower extract in a dose-dependent manner. In addition, A. indica extract inhibited HMG-CoA reductase activity, resulting in low level of intracellular cholesterol accumulation, together with increased cytosolic NPC1L1 protein expression and decreased PPARδ gene expression. In conclusion, A. indica flower extract has cholesterol-lowering effects by inhibiting intestinal cholesterol absorption, interfering micellar cholesterol formation, and attenuating cholesterol synthesis. As such, A. indica flower extract has potential for developing into nutraceutical product for prevention of hypocholesterolemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...