Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Funct Plant Biol ; 47(2): 145-155, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31940265

RESUMO

To enhance breeding efficiency for iron (Fe) toxicity tolerance and boost lowland rice production in sub-Saharan Africa, we have characterised the morphological, physiological and biochemical responses of contrasting rice varieties to excess iron. Here, we report the capacity of four varieties (CK801 and Suakoko8 (tolerant), Supa and IR64 (sensitive)) to oxidise iron in the rhizosphere and control iron-induced oxidative stress. The experiments were conducted in hydroponic conditions using modified Magnavaca nutrient solution and 300 ppm of ferrous iron (Fe2+) supplied in the form of FeSO4. Severe oxidative stress was observed in sensitive varieties as revealed by their high levels of lipid peroxidation. Histochemical and biochemical analyses showed that tolerant varieties exhibited a better development of the aerenchyma and greater oxygen release than the sensitive varieties in response to excess Fe. Both suberin and lignin deposits were observed in the root, stem and leaf tissues but with varying intensities depending on the variety. Under iron toxic conditions, tolerant varieties displayed increased superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POX) and ascorbate peroxidase (APX) activities in both the roots and shoots, whereas sensitive varieties showed increased APX and catalase (CAT) activities in the roots. This study had revealed also that Suakoko8 mainly uses root oxidation to exclude Fe2+ from its rhizosphere, and CK801 possesses a strong reactive oxygen species scavenging system, in addition to root oxidation ability. Key traits associated with these tolerance mechanisms such as a well-developed aerenchyma, radial oxygen loss restricted to the root cap as well as strong activation of antioxidative enzymes (SOD, GR, POX and APX) could be useful selection criteria in rice varietal improvement programs for enhanced Fe toxicity tolerance.


Assuntos
Oryza , África , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo
2.
Funct Plant Biol ; 46(1): 93-105, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939261

RESUMO

Iron (Fe) is a fundamental element involved in various plant metabolic processes. However, when Fe uptake is excessive, it becomes toxic to the plant and disrupts cellular homeostasis. The aim of this study was to determine the physiological and biochemical mechanisms underlying tolerance to Fe toxicity in contrasting rice varieties adapted to African environments. Four varieties (CK801 and Suakoko 8 (tolerant), Supa and IR64 (sensitive)) selected from our previous work were analysed in more detail, and the first part of this study reports morphological, physiological and biochemical responses induced by Fe toxicity in these four varieties. Morphological (shoot length, root length, number of lateral roots), physiological (photosynthesis rate, stomatal conductance, transpiration rate, fluorescence, relative water content and cell membrane stability) and biochemical (tissue Fe, chlorophyll pigments, soluble sugars, protein and starch) traits were measured, as appropriate, on both shoot and root tissues and at different time points during the stress period. Fe toxicity significantly (P≤0.05) reduced growth and metabolism of all the four varieties. Tolerant varieties showed more lateral roots than the sensitive ones, under Fe toxic conditions as well as higher photosynthesis rate, chlorophyll content and cell membrane stability. Strong dilution of Fe concentration in cells was identified, as one of the additional tolerance mechanisms used by CK801, whereas Suakoko 8 mainly used strong mobilisation of carbohydrates at the early stage of the stress period to anticipate metabolite shortage. Traits associated with Fe toxicity tolerance in this study could be specifically targeted in trait-based breeding programs of superior lowland rice varieties tolerant of Fe toxicity.


Assuntos
Ferro/toxicidade , Oryza/efeitos dos fármacos , África , Clorofila/metabolismo , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fotossíntese/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Especificidade da Espécie , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...