Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538911

RESUMO

The largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods. The packing mode with the lowest energy contains syn-anti and anti-syn H-bonding between stacks. It can accommodate R and S epimers, and side chain variability. For this packing, a match with the available EM data on the subunit axial repeat and optical data is obtained with multiple concentric cylinders for a rolling vector with the stacks running at an angle of 21° to the cylinder axis and with the BChl dipole moments running at an angle ߠ∼ 55° to the tube axis, in accordance with optical data. A packing mode involving alternating syn and anti parallel stacks that is at variance with EM appears higher in energy. A weak cross-peak at -6 ppm in the MAS NMR with 50 kHz spinning, assigned to C-181, matches the shift of antiparallel dimers, which possibly reflects a minor impurity-type fraction in the self-assembled BChl c.

2.
Elife ; 82019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30785398

RESUMO

Scramblases catalyze the movement of lipids between both leaflets of a bilayer. Whereas the X-ray structure of the protein nhTMEM16 has previously revealed the architecture of a Ca2+-dependent lipid scramblase, its regulation mechanism has remained elusive. Here, we have used cryo-electron microscopy and functional assays to address this question. Ca2+-bound and Ca2+-free conformations of nhTMEM16 in detergent and lipid nanodiscs illustrate the interactions with its environment and they reveal the conformational changes underlying its activation. In this process, Ca2+ binding induces a stepwise transition of the catalytic subunit cavity, converting a closed cavity that is shielded from the membrane in the absence of ligand, into a polar furrow that becomes accessible to lipid headgroups in the Ca2+-bound state. Additionally, our structures demonstrate how nhTMEM16 distorts the membrane at both entrances of the subunit cavity, thereby decreasing the energy barrier for lipid movement.


Assuntos
Anoctaminas/metabolismo , Microscopia Crioeletrônica/métodos , Sequência de Aminoácidos , Anoctaminas/ultraestrutura , Cristalografia por Raios X , Ligantes , Conformação Proteica , Homologia de Sequência de Aminoácidos
3.
Elife ; 82019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30785399

RESUMO

The lipid scramblase TMEM16F initiates blood coagulation by catalyzing the exposure of phosphatidylserine in platelets. The protein is part of a family of membrane proteins, which encompasses calcium-activated channels for ions and lipids. Here, we reveal features of murine TMEM16F (mTMEM16F) that underlie its function as a lipid scramblase and an ion channel. The cryo-EM data of mTMEM16F in absence and presence of Ca2+ define the ligand-free closed conformation of the protein and the structure of a Ca2+-bound intermediate. Both conformations resemble their counterparts of the scrambling-incompetent anion channel mTMEM16A, yet with distinct differences in the region of ion and lipid permeation. In conjunction with functional data, we demonstrate the relationship between ion conduction and lipid scrambling. Although activated by a common mechanism, both functions appear to be mediated by alternate protein conformations that are at equilibrium in the ligand-bound state.


Assuntos
Anoctaminas/química , Anoctaminas/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/metabolismo , Conformação Proteica
4.
Nat Struct Mol Biol ; 25(6): 515-521, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29872227

RESUMO

Human ASCT2 belongs to the SLC1 family of secondary transporters and is specific for the transport of small neutral amino acids. ASCT2 is upregulated in cancer cells and serves as the receptor for many retroviruses; hence, it has importance as a potential drug target. Here we used single-particle cryo-EM to determine a structure of the functional and unmodified human ASCT2 at 3.85-Å resolution. ASCT2 forms a homotrimeric complex in which each subunit contains a transport and a scaffold domain. Prominent extracellular extensions on the scaffold domain form the predicted docking site for retroviruses. Relative to structures of other SLC1 members, ASCT2 is in the most extreme inward-oriented state, with the transport domain largely detached from the central scaffold domain on the cytoplasmic side. This domain detachment may be required for substrate binding and release on the intracellular side of the membrane.


Assuntos
Sistema ASC de Transporte de Aminoácidos/química , Microscopia Crioeletrônica/métodos , Antígenos de Histocompatibilidade Menor/química , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Glutamina/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/ultraestrutura , Pichia/genética , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Transporte Proteico , Proteolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
5.
Nat Commun ; 8(1): 722, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959045

RESUMO

Bacteria downregulate their ribosomal activity through dimerization of 70S ribosomes, yielding inactive 100S complexes. In Escherichia coli, dimerization is mediated by the hibernation promotion factor (HPF) and ribosome modulation factor. Here we report the cryo-electron microscopy study on 100S ribosomes from Lactococcus lactis and a dimerization mechanism involving a single protein: HPFlong. The N-terminal domain of HPFlong binds at the same site as HPF in Escherichia coli 100S ribosomes. Contrary to ribosome modulation factor, the C-terminal domain of HPFlong binds exactly at the dimer interface. Furthermore, ribosomes from Lactococcus lactis do not undergo conformational changes in the 30S head domains upon binding of HPFlong, and the Shine-Dalgarno sequence and mRNA entrance tunnel remain accessible. Ribosome activity is blocked by HPFlong due to the inhibition of mRNA recognition by the platform binding center. Phylogenetic analysis of HPF proteins suggests that HPFlong-mediated dimerization is a widespread mechanism of ribosome hibernation in bacteria.When bacteria enter the stationary growth phase, protein translation is suppressed via the dimerization of 70S ribosomes into inactive complexes. Here the authors provide a structural basis for how the dual domain hibernation promotion factor promotes ribosome dimerization and hibernation in bacteria.


Assuntos
Proteínas de Bactérias/ultraestrutura , Dimerização , Lactococcus lactis/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Biossíntese de Proteínas , RNA Mensageiro , Imagem Individual de Molécula
6.
Nat Plants ; 3: 17080, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604725

RESUMO

Photosystem II (PSII) is a light-driven protein, involved in the primary reactions of photosynthesis. In plant photosynthetic membranes PSII forms large multisubunit supercomplexes, containing a dimeric core and up to four light-harvesting complexes (LHCs), which act as antenna proteins. Here we solved a three-dimensional (3D) structure of the C2S2M2 supercomplex from Arabidopsis thaliana using cryo-transmission electron microscopy (cryo-EM) and single-particle analysis at an overall resolution of 5.3 Å. Using a combination of homology modelling and restrained refinement against the cryo-EM map, it was possible to model atomic structures for all antenna complexes and almost all core subunits. We located all 35 chlorophylls of the core region based on the cyanobacterial PSII structure, whose positioning is highly conserved, as well as all the chlorophylls of the LHCII S and M trimers. A total of 13 and 9 chlorophylls were identified in CP26 and CP24, respectively. Energy flow from LHC complexes to the PSII reaction centre is proposed to follow preferential pathways: CP26 and CP29 directly transfer to the core using several routes for efficient transfer; the S trimer is directly connected to CP43 and the M trimer can efficiently transfer energy to the core through CP29 and the S trimer.


Assuntos
Arabidopsis/química , Clorofila/química , Complexo de Proteína do Fotossistema II/química , Cristalografia por Raios X , Modelos Moleculares , Complexo de Proteína do Fotossistema II/ultraestrutura , Conformação Proteica
8.
Chemistry ; 23(14): 3280-3284, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28117921

RESUMO

Hybrid magic-angle spinning (MAS) NMR spectroscopy and TEM were demonstrated for de novo structure determination of para-crystalline materials with a bioinspired fused naphthalene diimide (NDI)-salphen-phenazine prototype light-harvesting compound. Starting from chiral building blocks with C2 molecular symmetry, the asymmetric unit was determined by MAS NMR spectroscopy, index low-resolution TEM diffraction data, and resolve reflection conditions, and for the first time the ability to determine the space group from reciprocal space data using this hybrid approach was shown. Transfer of molecular C2 symmetry into P2/c packing symmetry provided a connection across length scales to overcome both lack of long-range order and missing diffraction-phase information. Refinement with heteronuclear distance constraints confirmed the racemic P2/c packing that was scaffolded by molecular recognition of salphen zinc in a pseudo-octahedral environment with bromide and with alkyl chains folding along the phenazine. The NDI light-harvesting stacks ran orthogonal to the intermolecular electric dipole moment present in the solid. Finally, the orientation of flexible lamellae on an electrode surface was determined.

9.
Biochim Biophys Acta ; 1857(9): 1619-1626, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27392600

RESUMO

Photosystem I (PSI) of the thermophilic cyanobacterium Chroococcidiopsis sp. TS-821 (TS-821) forms tetramers Li et al. (2014). Two-dimensional maps obtained by single particle electron microscopy (EM) clearly show that the tetramer lacks four-fold symmetry and is actually composed of a dimer of dimers with C2 symmetry. The resolution of these negative stain 2D maps did not permit the placement of most of the small PSI subunits, except for PsaL. Therefore cryo-EM was used for 3D reconstruction of the PSI tetramer complex. A 3D model at ~11.5Å resolution was obtained and a 2D map within the membrane plane of ~6.1Å. This data was used to build a model that was compared with the high-resolution structure of the PSI of Thermosynechococcus elongatus (T. elongatus) at 2.5Å. This comparison reveals key differences in which subunits are involved in the two different interfaces, interface type 1 within a dimer and interface type 2 between dimers. The type 1 interface in TS-821 is similar to the monomer interface in the trimeric PSI from T. elongatus, with interactions between subunits PsaA, -B, -I, -L and M. In type 2 the interaction is only between PsaA, -B and -L. Unlike the trimeric PSI, the central cavity of the complex is not filled with the PsaL-derived helical bundle, but instead seems filled with lipids. The physiological or evolutionary advantage of the tetramer is unknown. However, the presence of both dimers and tetramers in the thylakoid membrane suggest a dynamic equilibrium that shifts towards the tetramers in high light.


Assuntos
Cianobactérias/química , Complexo de Proteína do Fotossistema I/ultraestrutura , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema I/química , Multimerização Proteica , Subunidades Proteicas
10.
J Phys Chem B ; 120(24): 5367-76, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27240572

RESUMO

Among all photosynthetic organisms, green bacteria have evolved one of the most efficient light-harvesting antenna, the chlorosome, that contains hundreds of thousands of bacteriochlorophyll molecules, allowing these bacteria to grow photosynthetically by absorbing only a few photons per bacteriochlorophyll molecule per day. In contrast to other photosynthetic light-harvesting antenna systems, for which a protein scaffold imposes the proper positioning of the chromophores with respect to each other, in chlorosomes, this is accomplished solely by self-assembly. This has aroused enormous interest in the structure-function relations of these assemblies, as they can serve as blueprints for artificial light harvesting systems. In spite of these efforts, conclusive structural information is not available yet, reflecting the sample heterogeneity inherent to the natural system. Here we combine mutagenesis, polarization-resolved single-particle fluorescence-excitation spectroscopy, cryo-electron microscopy, and theoretical modeling to study the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. We demonstrate that only the combination of these techniques yields unambiguous information on the structure of the bacteriochlorophyll aggregates within the chlorosomes. Moreover, we provide a quantitative estimate of the curvature variation of these aggregates that explains ongoing debates concerning the chlorosome structure.


Assuntos
Proteínas de Bactérias/química , Chlorobi/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mutagênese , Espectrometria de Fluorescência
11.
J Struct Biol ; 184(2): 301-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012833

RESUMO

Chaplins are small, secreted proteins of streptomycetes that play instrumental roles in the formation of aerial hyphae and attachment of hyphae to surfaces. Here we show that the purified proteins self-assemble at a water/air interface into an asymmetric and amphipathic protein membrane that has an amyloid nature. Cryo-tomography reveals that the hydrophilic surface is relatively smooth, while the hydrophobic side is highly structured and characterized by the presence of small fibrils, which are similar to those observed on the surfaces of aerial hyphae. Interestingly, our work also provides evidence that chaplins in solution assemble into amyloid fibrils with a distinct morphology. These hydrophilic fibrils strongly resemble the structures known to be involved in attachment of Streptomyces hyphae to surfaces. These data for the first time show the assembly of bacterial proteins into two distinct amyloid structures that have different and relevant functions in vivo.


Assuntos
Amiloide/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Streptomyces coelicolor , Amiloide/química , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Multimerização Proteica , Estrutura Quaternária de Proteína , Propriedades de Superfície
12.
Res Microbiol ; 164(5): 397-405, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23517882

RESUMO

Acinetobacter baumannii is an important nosocomial pathogen responsible for colonization and infection of critically ill patients. Its virulence attributes together with the condition of the host determine the pathogenicity of A. baumannii. These virulence factors may be delivered to host cells by membrane vesicles. The aim of this study was to characterize the formation and morphology of membrane vesicles (MVs) from A. baumannii ATCC19606(T) using cryo-electron microscopy. Cryo-electron microscopy imaging of A. baumannii in broth cultures revealed the formation of small (≈ 30 nm) outer membrane vesicles at distal ends of early log-phase bacteria and larger (200-500 nm) membrane vesicles at septa of dividing bacteria. In the stationary phase vesicles comprising both inner and outer membranes were observed. In addition, we noted the presence of highly branched membrane structures originating from bacterial remnants forming large numbers of vesicles that were covered with proteins. Exposure of A. baumannii to sub-inhibitory concentrations of the antibiotic ceftazidime resulted in an increase in formation of MVs. Together, our results revealed multiple ways of vesicle formation leading to morphologically different MVs in the various stages of in vitro bacterial cultures.


Assuntos
Acinetobacter baumannii/ultraestrutura , Vesículas Secretórias/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica
13.
Biochemistry ; 51(22): 4488-98, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22577986

RESUMO

The self-aggregated state of bacteriochlorophyll (BChl) c molecules in chlorosomes belonging to a bchQ bchR mutant of the green sulfur bacteria Chlorobaculum tepidum, which mostly produces a single 17(2)-farnesyl-(R)-[8-ethyl,12-methyl]BChl c homologue, was characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy and high-resolution electron microscopy. A nearly complete (1)H and (13)C chemical shift assignment was obtained from well-resolved homonuclear (13)C-(13)C and heteronuclear (1)H-(13)C NMR data sets collected from (13)C-enriched chlorosome preparations. Pronounced doubling (1:1) of specific (13)C and (1)H resonances revealed the presence of two distinct and nonequivalent BChl c components, attributed to all syn- and all anti-coordinated parallel stacks, depending on the rotation of the macrocycle with respect to the 3(1)-methyl group. Steric hindrance from the 20-methyl functionality induces structural differences between the syn and anti forms. A weak but significant and reproducible reflection at 1/0.69 nm(-1) in the direction perpendicular to the curvature of cylindrical segments observed with electron microscopy also suggests parallel stacking of BChl c molecules, though the observed lamellar spacing of 2.4 nm suggests weaker packing than for wild-type chlorosomes. We propose that relaxation of the pseudosymmetry observed for the wild type and a related BChl d mutant leads to extended domains of alternating syn and anti stacks in the bchQ bchR chlorosomes. Domains can be joined to form cylinders by helical syn-anti transition trajectories. The phase separation in domains on the cylindrical surface represents a basic mechanism for establishing suprastructural heterogeneity in an otherwise uniform supramolecular scaffolding framework that is well-ordered at the molecular level.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofilas/química , Chlorobi/química , Chlorobi/genética , Proteínas de Bactérias/genética , Bacterioclorofilas/genética , Chlorobi/ultraestrutura , Mutação , Ressonância Magnética Nuclear Biomolecular
14.
J Bacteriol ; 193(23): 6701-11, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965575

RESUMO

Chlorosomes are sac-like, light-harvesting organelles that characteristically contain very large numbers of bacteriochlorophyll (BChl) c, d, or e molecules. These antenna structures occur in chlorophototrophs belonging to some members of the Chlorobi and Chloroflexi phyla and are also found in a recently discovered member of the phylum Acidobacteria, "Candidatus Chloracidobacterium thermophilum." "Ca. Chloracidobacterium thermophilum" is the first aerobic organism discovered to possess chlorosomes as light-harvesting antennae for phototrophic growth. Chlorosomes were isolated from "Ca. Chloracidobacterium thermophilum" and subjected to electron microscopic, spectroscopic, and biochemical analyses. The chlorosomes of "Ca. Chloracidobacterium thermophilum" had an average size of ∼100 by 30 nm. Cryo-electron microscopy showed that the BChl c molecules formed folded or twisted, sheet-like structures with a lamellar spacing of ∼2.3 nm. Unlike the BChls in the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum, concentric cylindrical nanotubes were not observed. Chlorosomes of "Ca. Chloracidobacterium thermophilum" contained a homolog of CsmA, the BChl a-binding, baseplate protein; CsmV, a protein distantly related to CsmI, CsmJ, and CsmX of C. tepidum, which probably binds a single [2Fe-2S] cluster; and five unique polypeptides (CsmR, CsmS, CsmT, CsmU, and a type II NADH dehydrogenase homolog). Although "Ca. Chloracidobacterium thermophilum" is an aerobe, energy transfer among the BChls in these chlorosomes was very strongly quenched in the presence of oxygen (as measured by quenching of fluorescence emission). The combined analyses showed that the chlorosomes of "Ca. Chloracidobacterium thermophilum" possess a number of unique features but also share some properties with the chlorosomes found in anaerobic members of other phyla.


Assuntos
Acidobacteria/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Organelas/química , Organelas/ultraestrutura , Acidobacteria/química , Acidobacteria/genética , Acidobacteria/ultraestrutura , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Peso Molecular , Organelas/genética , Organelas/metabolismo , Alinhamento de Sequência
15.
Biochim Biophys Acta ; 1807(3): 368-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21110939

RESUMO

The architecture of grana membranes from spinach chloroplasts was studied by cryo electron tomography. Tomographic reconstructions of ice-embedded isolated grana stacks enabled to resolve features of photosystem II (PSII) in the native membrane and to assign the absolute orientation of individual membranes of granal thylakoid discs. Averaging of 3D sub-volumes containing PSII complexes provided a 3D structure of the PSII complex at 40 Å resolution. Comparison with a recently proposed pseudo-atomic model of the PSII supercomplex revealed the presence of unknown protein densities right on top of 4 light harvesting complex II (LHCII) trimers at the lumenal side of the membrane. The positions of individual dimeric PSII cores within an entire membrane layer indicates that about 23% supercomplexes must be of smaller size than full C(2)S(2)M(2) supercomplexes, to avoid overlap.


Assuntos
Cloroplastos/ultraestrutura , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema II/ultraestrutura , Tilacoides/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Pigmentos Biológicos , Tilacoides/química
16.
Photosynth Res ; 104(2-3): 245-55, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20130996

RESUMO

Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Their excitation energy flows via a small protein, CsmA embedded in the baseplate to the photosynthetic reaction centres. Chlorosomes allow for photosynthesis at very low light intensities by ultra-rapid transfer of excitations to reaction centres and enable organisms with chlorosomes to live at extraordinarily low light intensities under which no other phototrophic organisms can grow. This article reviews several aspects of chlorosomes: the supramolecular and molecular organizations and the light-harvesting and spectroscopic properties. In addition, it provides some novel information about the organization of the baseplate.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Organelas/metabolismo , Fotossíntese , Clorofila/química , Modelos Moleculares , Organelas/ultraestrutura , Análise Espectral
17.
Biochim Biophys Acta ; 1797(2): 272-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19925775

RESUMO

The fine structure of intact, close-to-spherical mitochondria from the alga Polytomella was visualized by dual-axis cryo-electron tomography. The supramolecular organization of dimeric ATP synthase in the cristae membranes was investigated by averaging subvolumes of tomograms and 3D details at approximately 6 nm resolution were revealed. Oligomeric ATP synthase is composed of rows of dimers at 12 nm intervals; the dimers make a slight angle along the row. In addition, the main features of monomeric ATP synthase, such as the conically shaped F(1) headpiece, central stalk and stator were revealed. This demonstrates the capability of dual-axis electron tomography to unravel details of proteins and their interactions in complete organelles.


Assuntos
Complexos de ATP Sintetase/química , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Membrana Celular/ultraestrutura , Clorófitas/química , Clorófitas/ultraestrutura , Dimerização , Processamento de Imagem Assistida por Computador
18.
Proc Natl Acad Sci U S A ; 106(21): 8525-30, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19435848

RESUMO

Chlorosomes are the largest and most efficient light-harvesting antennae found in nature, and they are constructed from hundreds of thousands of self-assembled bacteriochlorophyll (BChl) c, d, or e pigments. Because they form very large and compositionally heterogeneous organelles, they had been the only photosynthetic antenna system for which no detailed structural information was available. In our approach, the structure of a member of the chlorosome class was determined and compared with the wild type (WT) to resolve how the biological light-harvesting function of the chlorosome is established. By constructing a triple mutant, the heterogeneous BChl c pigment composition of chlorosomes of the green sulfur bacteria Chlorobaculum tepidum was simplified to nearly homogeneous BChl d. Computational integration of two different bioimaging techniques, solid-state NMR and cryoEM, revealed an undescribed syn-anti stacking mode and showed how ligated BChl c and d self-assemble into coaxial cylinders to form tubular-shaped elements. A close packing of BChls via pi-pi stacking and helical H-bonding networks present in both the mutant and in the WT forms the basis for ultrafast, long-distance transmission of excitation energy. The structural framework is robust and can accommodate extensive chemical heterogeneity in the BChl side chains for adaptive optimization of the light-harvesting functionality in low-light environments. In addition, syn-anti BChl stacks form sheets that allow for strong exciton overlap in two dimensions enabling triplet exciton formation for efficient photoprotection.


Assuntos
Bacterioclorofilas/antagonistas & inibidores , Membranas Intracelulares/química , Nanotubos/química , Bacterioclorofilas/química , Chlorobi/química , Microscopia Crioeletrônica , Membranas Intracelulares/ultraestrutura , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Mutação/genética , Nanotubos/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 106(2): 582-7, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19124777

RESUMO

Coronaviruses are enveloped viruses containing the largest reported RNA genomes. As a result of their pleomorphic nature, our structural insight into the coronavirion is still rudimentary, and it is based mainly on 2D electron microscopy. Here we report the 3D virion structure of coronaviruses obtained by cryo-electron tomography. Our study focused primarily on the coronavirus prototype murine hepatitis virus (MHV). MHV particles have a distinctly spherical shape and a relatively homogenous size ( approximately 85 nm envelope diameter). The viral envelope exhibits an unusual thickness (7.8 +/- 0.7 nm), almost twice that of a typical biological membrane. Focal pairs revealed the existence of an extra internal layer, most likely formed by the C-terminal domains of the major envelope protein M. In the interior of the particles, coiled structures and tubular shapes are observed, consistent with a helical nucleocapsid model. Our reconstructions provide no evidence of a shelled core. Instead, the ribonucleoprotein seems to be extensively folded onto itself, assuming a compact structure that tends to closely follow the envelope at a distance of approximately 4 nm. Focal contact points and thread-like densities connecting the envelope and the ribonucleoprotein are revealed in the tomograms. Transmissible gastroenteritis coronavirion tomograms confirm all the general features and global architecture observed for MHV. We propose a general model for the structure of the coronavirion in which our own and published observations are combined.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Vírus da Hepatite Murina/ultraestrutura , Vírion/ultraestrutura , Animais , Coronavirus , Camundongos , Vírus da Hepatite Murina/química , Nucleocapsídeo/química , Nucleocapsídeo/ultraestrutura , Proteínas do Envelope Viral/química , Vírion/química
20.
J Biol Chem ; 284(12): 7803-10, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19139095

RESUMO

In this work, Photosystem I supercomplexes have been purified from Lhca-deficient lines of Arabidopsis thaliana using a mild detergent treatment that does not induce loss of outer antennas. The complexes have been studied by integrating biochemical analysis with electron microscopy. This allows the direct correlation of changes in protein content with changes in supramolecular structure of Photosystem I to get information about the position of the individual Lhca subunits, the association of the antenna to the core, and the influence of the individual subunits on the stability of the system. Photosystem I complexes with only two or three antenna complexes were purified, showing that the binding of Lhca1/4 and Lhca2/3 dimers to the core is not interdependent, although weak binding of Lhca2/3 to the core is stabilized by the presence of Lhca4. Moreover, Lhca2 and Lhca4 can be associated with the core in the absence of their "dimeric partners." The structure of Photosystem I is very rigid, and the absence of one antenna complex leaves a "hole" in the structure that cannot be filled by other Lhcas, clearly indicating that the docking sites for the individual subunits are highly specific. There is, however, an exception to the rule: Lhca5 can substitute for Lhca4, yielding highly stable PSI supercomplexes with a supramolecular organization identical to the WT.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Dimerização , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/isolamento & purificação , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...