Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sens Diagn ; 2(4): 918-928, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37465007

RESUMO

Non-invasive breath analysis with mobile health devices bears tremendous potential to guide therapeutic treatment and personalize lifestyle changes. Of particular interest is the breath volatile acetone, a biomarker for fat burning, that could help in understanding and treating metabolic diseases. Here, we report a hand-held (6 × 10 × 19.5 cm3), light-weight (490 g), and simple device for rapid acetone detection in breath. It comprises a tailor-made end-tidal breath sampling unit, connected to a sensor and a pump for on-demand breath sampling, all operated using a Raspberry Pi microcontroller connected with a HDMI touchscreen. Accurate acetone detection is enabled by introducing a catalytic filter and a separation column, which remove and separate undesired interferents from acetone upstream of the sensor. This way, acetone is detected selectively even in complex gas mixtures containing highly concentrated interferents. This device accurately tracks breath acetone concentrations in the exhaled breath of five volunteers during a ketogenic diet, being as high as 26.3 ppm. Most importantly, it can differentiate small acetone changes during a baseline visit as well as before and after an exercise stimulus, being as low as 0.5 ppm. It is stable for at least four months (122 days), and features excellent bias and precision of 0.03 and 0.6 ppm at concentrations below 5 ppm, as validated by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). Hence, this detector is highly promising for simple-in-use, non-invasive, and routine monitoring of acetone to guide therapeutic treatment and track lifestyle changes.

2.
ACS Sens ; 8(7): 2618-2626, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37377394

RESUMO

Liver diseases (e.g., cirrhosis, cancer) cause more than two million deaths per year worldwide. This is partly attributed to late diagnosis and insufficient screening techniques. A promising biomarker for noninvasive and inexpensive liver disease screening is breath limonene that can indicate a deficiency of the cytochrome P450 liver enzymes. Here, we introduce a compact and low-cost detector for dynamic and selective breath limonene sensing. It comprises a chemoresistive sensor based on Si/WO3 nanoparticles pre-screened by a packed bed Tenax separation column at room temperature. We demonstrate selective limonene detection down to 20 parts per billion over up to three orders of magnitude higher concentrated acetone, ethanol, hydrogen, methanol, and 2-propanol in gas mixtures, as well as robustness to 10-90% relative humidity. Most importantly, this detector recognizes the individual breath limonene dynamics of four healthy volunteers following the ingestion (swallowing or chewing) of a limonene capsule. Limonene release and subsequent metabolization are monitored from breath measurements in real time and in excellent agreement (R2 = 0.98) with high-resolution proton transfer reaction mass spectrometry. This study demonstrates the potential of the detector as a simple-to-use and noninvasive device for the routine monitoring of limonene levels in exhaled breath to facilitate early diagnosis of liver dysfunction.


Assuntos
Acetona , Cirrose Hepática , Humanos , Limoneno , Espectrometria de Massas/métodos , Acetona/análise , Prótons
3.
ACS Omega ; 4(19): 18035-18048, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720507

RESUMO

An approach to tailor the morphology and sensing characteristics of CuO nanoplatelets for selective detection of NO2 gas is of great significance and an important step toward achieving the challenge of improving air quality and in assuring the safety of mining operations. As a result, in this study, we report on the NO2 room temperature gas-sensing characteristics of CuO nanoplatelets and the underlying mechanism toward the gas-sensing performance by altering the synthesis reaction base and time. High sensitivity of ∼40 ppm-1 to NO2 gas at room temperature has been realized for gas sensors fabricated from CuO nanoplatelets, using NaOH as base for reaction times of 45 and 60 min, respectively at 75 °C. In both cases, the crystallite size, surface area, and hole concentration of the respective materials influenced the selectivity and sensitivity of the NO2 gas sensors. The mechanism underpinning the superior NO2 gas sensing are thoroughly discussed in terms of the crystallite size, hole concentration, and surface area as active sites for gas adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...