Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Topogr ; 32(4): 550-568, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209695

RESUMO

Electrophysiological Source Imaging (ESI) is hampered by lack of "gold standards" for model validation. Concurrent electroencephalography (EEG) and electrocorticography (ECoG) experiments (EECoG) are useful for this purpose, especially primate models due to their flexibility and translational value for human research. Unfortunately, there is only one EECoG experiments in the public domain that we know of: the Multidimensional Recording (MDR) is based on a single monkey ( www.neurotycho.org ). The mining of this type of data is hindered by lack of specialized procedures to deal with: (1) Severe EECoG artifacts due to the experimental produces; (2) Sophisticated forward models that account for surgery induced skull defects and implanted ECoG electrode strips; (3) Reliable statistical procedures to estimate and compare source connectivity (partial correlation). We provide solutions to the processing issues just mentioned with EECoG-Comp: an open source platform ( https://github.com/Vincent-wq/EECoG-Comp ). EECoG lead fields calculated with FEM (Simbio) for MDR data are also provided and were used in other papers of this special issue. As a use case with the MDR, we show: (1) For real MDR data, 4 popular ESI methods (MNE, LCMV, eLORETA and SSBL) showed significant but moderate concordance with a usual standard, the ECoG Laplacian (standard partial [Formula: see text]); (2) In both monkey and human simulations, all ESI methods as well as Laplacian had a significant but poor correspondence with the true source connectivity. These preliminary results may stimulate the development of improved ESI connectivity estimators but require the availability of more EECoG data sets to obtain neurobiologically valid inferences.


Assuntos
Eletroencefalografia/métodos , Artefatos , Eletrocorticografia , Eletrodos Implantados , Humanos
2.
Neural Netw ; 93: 1-6, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28505599

RESUMO

Blind source separation (BSS) algorithms extract neural signals from electroencephalography (EEG) data. However, it is difficult to quantify source separation performance because there is no criterion to dissociate neural signals and noise in EEG signals. This study develops a method for evaluating BSS performance. The idea is neural signals in EEG can be estimated by comparison with simultaneously measured electrocorticography (ECoG). Because the ECoG electrodes cover the majority of the lateral cortical surface and should capture most of the original neural sources in the EEG signals. We measured real EEG and ECoG data and developed an algorithm for evaluating BSS performance. First, EEG signals are separated into EEG components using the BSS algorithm. Second, the EEG components are ranked using the correlation coefficients of the ECoG regression and the components are grouped into subsets based on their ranks. Third, canonical correlation analysis estimates how much information is shared between the subsets of the EEG components and the ECoG signals. We used our algorithm to compare the performance of BSS algorithms (PCA, AMUSE, SOBI, JADE, fastICA) via the EEG and ECoG data of anesthetized nonhuman primates. The results (Best case >JADE = fastICA >AMUSE = SOBI ≥ PCA >random separation) were common to the two subjects. To encourage the further development of better BSS algorithms, our EEG and ECoG data are available on our Web site (http://neurotycho.org/) as a common testing platform.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Animais , Artefatos , Eletrocorticografia/métodos , Macaca fascicularis , Macaca mulatta , Ruído
3.
PLoS One ; 11(3): e0150934, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963915

RESUMO

Under social conflict, monkeys develop hierarchical positions through social interactions. Once the hierarchy is established, the dominant monkey dominates the space around itself and the submissive monkey tries not to violate this space. Previous studies have shown the contributions of the frontal and parietal cortices in social suppression, but the contributions of other cortical areas to suppressive functions remain elusive. We recorded neural activity in large cortical areas using electrocorticographic (ECoG) arrays while monkeys performed a social food-grab task in which a target monkey was paired with either a dominant or a submissive monkey. If the paired monkey was dominant, the target monkey avoided taking food in the shared conflict space, but not in other areas. By contrast, when the paired monkey was submissive, the target monkey took the food freely without hesitation. We applied decoding analysis to the ECoG data to see when and which cortical areas contribute to social behavioral suppression. Neural information discriminating the social condition was more evident when the conflict space was set in the area contralateral to the recording hemisphere. We found that the information increased as the social pressure increased during the task. Before food presentation, when the pressure was relatively low, the parietal and somatosensory-motor cortices showed sustained discrimination of the social condition. After food presentation, when the monkey faced greater pressure to make a decision as to whether it should take the food, the prefrontal and visual cortices started to develop buildup responses. The social representation was found in a sustained form in the parietal and somatosensory-motor regions, followed by additional buildup form in the visual and prefrontal cortices. The representation was less influenced by reward expectation. These findings suggest that social adaptation is achieved by a higher-order self-regulation process (incorporating motor preparation/execution processes) in accordance with the embodied social contexts.


Assuntos
Comportamento Animal/fisiologia , Dominação-Subordinação , Eletrocorticografia , Macaca/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino
4.
PLoS One ; 9(3): e92584, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658578

RESUMO

Birdsong provides a unique model for understanding the behavioral and neural bases underlying complex sequential behaviors. However, birdsong analyses require laborious effort to make the data quantitatively analyzable. The previous attempts had succeeded to provide some reduction of human efforts involved in birdsong segment classification. The present study was aimed to further reduce human efforts while increasing classification performance. In the current proposal, a linear-kernel support vector machine was employed to minimize the amount of human-generated label samples for reliable element classification in birdsong, and to enable the classifier to handle highly-dimensional acoustic features while avoiding the over-fitting problem. Bengalese finch's songs in which distinct elements (i.e., syllables) were aligned in a complex sequential pattern were used as a representative test case in the neuroscientific research field. Three evaluations were performed to test (1) algorithm validity and accuracy with exploring appropriate classifier settings, (2) capability to provide accuracy with reducing amount of instruction dataset, and (3) capability in classifying large dataset with minimized manual labeling. The results from the evaluation (1) showed that the algorithm is 99.5% reliable in song syllables classification. This accuracy was indeed maintained in evaluation (2), even when the instruction data classified by human were reduced to one-minute excerpt (corresponding to 300-400 syllables) for classifying two-minute excerpt. The reliability remained comparable, 98.7% accuracy, when a large target dataset of whole day recordings (∼30,000 syllables) was used. Use of a linear-kernel support vector machine showed sufficient accuracies with minimized manually generated instruction data in bird song element classification. The methodology proposed would help reducing laborious processes in birdsong analysis without sacrificing reliability, and therefore can help accelerating behavior and studies using songbirds.


Assuntos
Aves Canoras/fisiologia , Máquina de Vetores de Suporte , Vocalização Animal , Animais , Masculino , Reprodutibilidade dos Testes , Vocalização Animal/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...