Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958661

RESUMO

Fission yeast cells prevent mitotic entry until a threshold cell surface area is reached. The protein kinase Cdr2 contributes to this size control system by forming multiprotein nodes that inhibit Wee1 at the medial cell cortex. Cdr2 node anchoring at the cell cortex is not fully understood. Through a genomic screen, we identified the conserved GTPase Arf6 as a component of Cdr2 signaling. Cells lacking Arf6 failed to divide at a threshold surface area and instead shifted to volume-based divisions at increased overall size. Arf6 stably localized to Cdr2 nodes in its GTP-bound but not GDP-bound state, and its guanine nucleotide exchange factor (GEF), Syt22, was required for both Arf6 node localization and proper size at division. In arf6Δ mutants, Cdr2 nodes detached from the membrane and exhibited increased dynamics. These defects were enhanced when arf6Δ was combined with other node mutants. Our work identifies a regulated anchor for Cdr2 nodes that is required for cells to sense surface area.


Assuntos
Fator 6 de Ribosilação do ADP/metabolismo , Divisão Celular , Tamanho Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Citocinese
2.
J Cell Biol ; 219(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32421151

RESUMO

Protein kinases direct polarized growth by regulating the cytoskeleton in time and space and could play similar roles in cell division. We found that the Cdc42-activated polarity kinase Pak1 colocalizes with the assembling contractile actomyosin ring (CAR) and remains at the division site during septation. Mutations in pak1 led to defects in CAR assembly and genetic interactions with cytokinesis mutants. Through a phosphoproteomic screen, we identified novel Pak1 substrates that function in polarized growth and cytokinesis. For cytokinesis, we found that Pak1 regulates the localization of its substrates Mid1 and Cdc15 to the CAR. Mechanistically, Pak1 phosphorylates the Mid1 N-terminus to promote its association with cortical nodes that act as CAR precursors. Defects in Pak1-Mid1 signaling lead to misplaced and defective division planes, but these phenotypes can be rescued by synthetic tethering of Mid1 to cortical nodes. Our work defines a new signaling mechanism driven by a cell polarity kinase that promotes CAR assembly in the correct time and place.


Assuntos
Citocinese , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Quinases Ativadas por p21/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Fosforilação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais , Fatores de Tempo , Quinases Ativadas por p21/genética
3.
Mol Biol Cell ; 30(25): 3015-3023, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644361

RESUMO

To enter into mitosis, cells must shut off the cell cycle inhibitor Wee1. SAD family protein kinases regulate Wee1 signaling in yeast and humans. In Schizosaccharomyces pombe, two SAD kinases (Cdr1/Nim1 and Cdr2) act as upstream inhibitors of Wee1. Previous studies found that S. pombe Cdr1/Nim1 directly phosphorylates and inhibits Wee1 in vitro, but different results were obtained for budding yeast and human SAD kinases. Without a full understanding of Cdr1 action on Wee1, it has been difficult to assess the in vivo relevance and conservation of this mechanism. Here, we show that both Cdr1 and Cdr2 promote Wee1 phosphorylation in cells, but only Cdr1 inhibits Wee1 kinase activity. Inhibition occurs when Cdr1 phosphorylates a cluster of serine residues linking α-helices G and H of the Wee1 kinase domain. This region is highly divergent among different Wee1 proteins, consistent with distinct regulatory mechanisms. A wee(4A) mutant that impairs phosphorylation by Cdr1 delays mitotic entry and causes elongated cells. By disrupting and retargeting Cdr1 localization, we show that Cdr1 inhibition of Wee1 occurs in cells at cortical nodes formed by Cdr2. On the basis of our results, we propose a two-step model for inhibition of Wee1 by Cdr1 and Cdr2 at nodes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transporte Proteico , Schizosaccharomyces/metabolismo
4.
Elife ; 82019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31050341

RESUMO

Control of cell size requires molecular size sensors that are coupled to the cell cycle. Rod-shaped fission yeast cells divide at a threshold size partly due to Cdr2 kinase, which forms nodes at the medial cell cortex where it inhibits the Cdk1-inhibitor Wee1. Pom1 kinase phosphorylates and inhibits Cdr2, and forms cortical concentration gradients from cell poles. Pom1 inhibits Cdr2 signaling to Wee1 specifically in small cells, but the time and place of their regulatory interactions were unclear. We show that Pom1 forms stable oligomeric clusters that dynamically sample the cell cortex. Binding frequency is patterned into a concentration gradient by the polarity landmarks Tea1 and Tea4. Pom1 clusters colocalize with Cdr2 nodes, forming a glucose-modulated inhibitory threshold against node activation. Our work reveals how Pom1-Cdr2-Wee1 operates in multiprotein clusters at the cortex to promote mitotic entry at a cell size that can be modified by nutrient availability.


Assuntos
Citoplasma/enzimologia , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Glucose/metabolismo , Mitose , Ligação Proteica , Proteínas Quinases/análise , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/análise
5.
J Cell Biol ; 217(5): 1589-1599, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514920

RESUMO

Cell size control requires mechanisms that link cell growth with Cdk1 activity. In fission yeast, the protein kinase Cdr2 forms cortical nodes that include the Cdk1 inhibitor Wee1 along with the Wee1-inhibitory kinase Cdr1. We investigated how nodes inhibit Wee1 during cell growth. Biochemical fractionation revealed that Cdr2 nodes were megadalton structures enriched for activated Cdr2, which increases in level during interphase growth. In live-cell total internal reflection fluorescence microscopy videos, Cdr2 and Cdr1 remained constant at nodes over time, but Wee1 localized to nodes in short bursts. Recruitment of Wee1 to nodes required Cdr2 kinase activity and the noncatalytic N terminus of Wee1. Bursts of Wee1 localization to nodes increased 20-fold as cells doubled in size throughout G2. Size-dependent signaling was caused in part by the Cdr2 inhibitor Pom1, which suppressed Wee1 node bursts in small cells. Thus, increasing Cdr2 activity during cell growth promotes Wee1 localization to nodes, where inhibitory phosphorylation of Wee1 by Cdr1 and Cdr2 kinases promotes mitotic entry.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Tamanho Celular , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/química , Modelos Biológicos , Proteínas Nucleares/química , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Transporte Proteico , Proteínas Tirosina Quinases/química , Proteínas de Schizosaccharomyces pombe/química , Imagem com Lapso de Tempo
6.
J Biol Chem ; 292(45): 18457-18468, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28924043

RESUMO

Environmental conditions modulate cell cycle progression in many cell types. A key component of the eukaryotic cell cycle is the protein kinase Wee1, which inhibits the cyclin-dependent kinase Cdk1 in yeast through human cells. In the fission yeast Schizosaccharomyces pombe, the protein kinase Cdr1 is a mitotic inducer that promotes mitotic entry by phosphorylating and inhibiting Wee1. Cdr1 and Wee1 both localize to punctate structures, termed nodes, on the medial cortex, but it has been unknown whether node localization can be altered by physiological signals. Here we investigated how environmental conditions regulate Cdr1 signaling for cell division. Osmotic stress induced hyperphosphorylation of the mitotic inducer Cdr1 for several hours, and cells delayed division for the same time period. This stress-induced hyperphosphorylation required both Cdr1 autophosphorylation and the stress-activated protein kinase Sty1. During osmotic stress, Cdr1 exited cortical nodes and localized in the cytoplasm. Using a series of truncation mutants, we mapped a C-terminal domain that is necessary and sufficient for Cdr1 node localization and found that Sty1 directly phosphorylates this domain in vitro Sty1 was not required for Cdr1 exit from nodes, indicating the existence of additional regulatory signals. Both Cdr1 phosphorylation and node localization returned to basal levels when cells adapted to osmotic conditions and resumed cell cycle progression. In summary, we identified a mechanism that prevents Cdr1 colocalization with its inhibitory target Wee1 during osmotic stress. Dynamic regulation of protein localization to cortical nodes might represent a strategy to modulate entry into mitosis under differing environmental conditions.


Assuntos
Citoplasma/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Estresse Fisiológico , Regulação para Cima , Substituição de Aminoácidos , Citoplasma/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/genética , Mitose , Mutagênese Sítio-Dirigida , Mutação , Pressão Osmótica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA