Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Water Environ Res ; 95(1): e10833, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36635228

RESUMO

The impact of pharmaceutical residue transport in the aquatic ecosystem has become an increasing subject of environmental interest due to the inherent bioactivity of trace levels of antibiotics and the negative environmental and public health impact. In this study, three veterinary pharmaceuticals including tetracycline, ivermectin, and salicylic acid were investigated in a piggery effluent from Western Cape, South Africa. Three freshwater organisms' taxonomic groups (Pseudokirchneriella subcapitata, Daphnia magna, and Tetrahymena thermophila) were used to determine the ecological risk of different treated piggery effluent concentration range of 1%, 10%, and 20% and a cocktail mixture of veterinary pharmaceuticals of environmental concerns. The average concentration of veterinary pharmaceuticals was in the range of 47.35, 7.19, and 1.46 µg L-1 for salicylic acid, chloro-tetracycline, and ivermectin, respectively. P. subcapitata exposed to 20% piggery wastewater effluent at 24- and 48-h EC50 showed a toxicity value of 14.2% and 13.6% (v/v), respectively. The study established the ecological risk of the test compounds as low to medium risk for low-level dose and low concentrations of piggery effluent. The relative sensitivity ranking of the taxa drawn is microalgae > protozoa > Cladocera. The study results demonstrated that a high dose of piggery effluent and mixtures of veterinary pharmaceutical can pose a high risk in freshwater ecosystems. PRACTITIONER POINTS: Transport processes of veterinary antibiotics into the environment were investigated. Dilution effect of the veterinary pharmaceutical on the antibiotic levels exists. High dose of piggery effluent presented an ecological risk.


Assuntos
Drogas Veterinárias , Poluentes Químicos da Água , Animais , Suínos , Águas Residuárias/toxicidade , Ivermectina/toxicidade , Ecossistema , Drogas Veterinárias/toxicidade , Antibacterianos , Água Doce/química , Ácido Salicílico , Tetraciclinas , Poluentes Químicos da Água/química
2.
Front Toxicol ; 5: 1269601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239933

RESUMO

Phenolic pollutants from industrial and agricultural activities pose a major threat to the world's potable water supply. The persistent micro-pollutants often find their way into drinking water sources with possible adverse human health implications. In this study, bottled water, tap water, and wastewater treatment plant (WWTP) effluent samples from the Boland region of the Western Cape, South Africa were assessed to determine 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) levels using HPLC/DAD instrumentation. The selected area is known for its vast agricultural ventures and wineries. Evaluation of the human health risk (cancer risk) for the pollutants was conducted using the hazard quotient (HQ). The Ames mutagenicity test was also conducted using the Salmonella typhimurium T98 and T100 strains and the S9 activation enzyme. Trace levels of the phenolics were detected in the samples with a range of 9.32 × 10-7-1.15 × 10-4 mg/L obtained for 4-CP, and 8.80 × 10-7-1.72 × 10-4 mg/L recorded for 2,4-DCP. Both compounds had levels below the limit of 0.01 mg/L prescribed by South African legislation. The assessed HQ for the phenolic concentrations indicates a low level of potential ecological risk and none of the samples had a cancer risk value that exceeded the regulatory limit. The possibility of the analyzed samples causing cancer is unlikely, but non-carcinogenic adverse effects were found. Strong mutagenicity was observed for the T98 strains with a potential ability to cause mutation toward the insertion or deletion of a nucleotide. The T100 bacterial strain showed very slight mutagenicity potential, however, it is unlikely to cause any mutation. The levels of phenolics in the potable water samples may pose a significant threat to human health. Hence, screening persistent organic chemicals in potable water sources and evaluating their potential human health effects is pertinent to prevent associated health challenges.

3.
Folia Microbiol (Praha) ; 66(6): 931-947, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34224087

RESUMO

This study used conventional culturing and 16S rRNA metagenomics analyses to assess the diversity of bacterial communities in sediment samples obtained from the Berg River, Western Cape, South Africa. Samples were collected from six points: a residential and recreational area, an industrial area, an informal residential settlement, a point next to a wastewater treatment plant (WWTP), a pumping station, and a residential and agricultural farming area along the river. High bacterial counts recorded on general selective and differential culture media signify substantial microbial contamination along the sampling sites. The most prevalent bacterial phyla detected (through metagenomics analyses) along the sampling sites were Proteobacteria (61%), Planctomycetes (9.5%), Firmicutes (7.8%), Bacteroidetes (5%), Acidobacteria (4.6%), and Actinobacteria (4.6%). Some members of the identified predominant bacterial phyla, genera, and classes are important public health bacteria that have been implicated in human diseases and outbreaks, while some others are metal or hydrocarbon tolerant, indicating possible significant environmental pollution. Notable human pathogenic genera such as Bacillus, Clostridium, Shigella, Legionella, Mycobacterium, and Pseudomonas were identified in varying percentages at five of the six sampling areas. Fecal contamination was particularly rife at all residential areas, with the informal housing area being the most notably polluted. Diverse functional pathways were predicted for identified bacteria, such as those associated with different chronic and infectious human diseases as well as those related to hydrocarbon and metal remediation. The point next to a WWTP contained vastly diverse groups of bacterial contaminants as well as the most abundant pathway identities and titles.


Assuntos
Bactérias , Rios , Bactérias/genética , Humanos , Metagenômica , RNA Ribossômico 16S/genética , África do Sul
4.
Artigo em Inglês | MEDLINE | ID: mdl-31852365

RESUMO

Greater insights on the degradation pathways and intermediates formed during the oxidation of organics can be achieved by more suitable and compatible instrumentation. In our research, we sought to explore the relative advantages of the liquid chromatography coupled to a time of flight mass spectrometer (LCMS-TOF) technique for the comparative time-based degradation intermediates and pathways of 4-chlorophenol (4CP) and 4-nitrophenol (4NP). The ozonation of the analytes solution (100 mL of 2 x 10-3 M) was done in a sintered glass reactor, with an ozone dose of 0.14 mg min-1 (O2/O3 10 mL/min). The comparative oxidation results revealed that the 4-chloro- and 4-nitrocatechol pathways via hydroxylation were the major degradation route for 4CP and 4NP. Catechol intermediate was present as a primary breakdown product for the two analytes. Hydroquinone was observed as transient degradation intermediate for 4CP, but was absent for 4NP. Rather, a novel ozonation intermediate 2, 4-dinitrophenol was identified which was further oxidized to 3,6-dinitrocatechol. Several dimer products were identified in the oxidation processes, favored by alkaline conditions with more versatility shown by 4CP. The study provided a great insight into the ozone degradation intermediates and pathways, with some intermediates scarce in literature identified.


Assuntos
Clorofenóis/química , Disruptores Endócrinos/química , Nitrofenóis/química , Ozônio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Clorofenóis/análise , Cromatografia Líquida , Disruptores Endócrinos/análise , Espectrometria de Massas , Nitrofenóis/análise , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/análise
5.
Braz. j. microbiol ; 48(2): 314-325, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839384

RESUMO

Abstract This study was conducted to investigate the occurrence of PAH degrading microorganisms in two river systems in the Western Cape, South Africa and their ability to degrade two PAH compounds: acenaphthene and fluorene. A total of 19 bacterial isolates were obtained from the Diep and Plankenburg rivers among which four were identified as acenaphthene and fluorene degrading isolates. In simulated batch scale experiments, the optimum temperature for efficient degradation of both compounds was determined in a shaking incubator after 14 days, testing at 25 °C, 30 °C, 35 °C, 37 °C, 38 °C, 40 °C and 45 °C followed by experiments in a Stirred Tank Bioreactor using optimum temperature profiles from the batch experiment results. All experiments were run without the addition of supplements, bulking agents, biosurfactants or any other form of biostimulants. Results showed that Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila efficiently degraded both compounds at 37 °C, 37 °C, 30 °C and 35 °C respectively. The degradation of fluorene was more efficient and rapid compared to that of acenaphthene and degradation at Stirred Tank Bioreactor scale was more efficient for all treatments. Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila degraded a mean total of 98.60%, 95.70%, 90.20% and 99.90% acenaphthene, respectively and 99.90%, 97.90%, 98.40% and 99.50% fluorene, respectively. The PAH degrading microorganisms isolated during this study significantly reduced the concentrations of acenaphthene and fluorene and may be used on a larger, commercial scale to bioremediate PAH contaminated river systems.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Rios/microbiologia , Fluorenos/metabolismo , Acenaftenos/metabolismo , África do Sul , Temperatura , Bactérias/classificação , Biotransformação
6.
Environ Sci Pollut Res Int ; 24(14): 13107-13120, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28382450

RESUMO

The removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solutions using agro-waste biomass of Vitis vinifera (grape) leaf litter was studied. Activated carbons were produced from the biomass and chemical activation achieved by using phosphoric acid (H3PO4) and potassium hydroxide (KOH) for the modification of the carbons' surface morphology. Activated carbons were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller (BET) in order to understand removal mechanisms of the contaminants by activated carbons. The effect of solution concentration, pH, adsorbent dosage, contact time and temperature was evaluated to optimize the removal efficiency of activated carbons. Adsorption isotherm models were used to analyse the equilibrium data obtained, and kinetic models were applied to study sorption mechanisms. The results fitted well into Freundlich isotherm with both AC-KOH and AC-H3PO4 having high K f values. Maximum adsorption capacities for AC-H3PO4 were 78.90 and 75.13 mg/g for PFOA and PFOS, respectively. Equilibrium was reached before 60 min on both adsorbents, and thermodynamic studies indicated that the process was exothermic and spontaneous. Surface morphology showed the abundance of microspores (>60%) with BET total surface area of 295.488 and 158.67 m2/g for AC-H3PO4 and AC-KOH activated carbons, respectively. Removal efficiencies were 95 and 90% for PFOA using AC-H3PO4 and AC-KOH, respectively; corresponding values for PFOS were 94 and 88%. Adsorbents' removal capacities depended on the physicochemical characteristics of adsorbents.


Assuntos
Vitis , Poluentes Químicos da Água , Adsorção , Ácidos Alcanossulfônicos , Carbono/química , Carvão Vegetal/química , Fluorocarbonos , Concentração de Íons de Hidrogênio , Cinética , Soluções
7.
Braz J Microbiol ; 48(2): 314-325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27956015

RESUMO

This study was conducted to investigate the occurrence of PAH degrading microorganisms in two river systems in the Western Cape, South Africa and their ability to degrade two PAH compounds: acenaphthene and fluorene. A total of 19 bacterial isolates were obtained from the Diep and Plankenburg rivers among which four were identified as acenaphthene and fluorene degrading isolates. In simulated batch scale experiments, the optimum temperature for efficient degradation of both compounds was determined in a shaking incubator after 14 days, testing at 25°C, 30°C, 35°C, 37°C, 38°C, 40°C and 45°C followed by experiments in a Stirred Tank Bioreactor using optimum temperature profiles from the batch experiment results. All experiments were run without the addition of supplements, bulking agents, biosurfactants or any other form of biostimulants. Results showed that Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila efficiently degraded both compounds at 37°C, 37°C, 30°C and 35°C respectively. The degradation of fluorene was more efficient and rapid compared to that of acenaphthene and degradation at Stirred Tank Bioreactor scale was more efficient for all treatments. Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila degraded a mean total of 98.60%, 95.70%, 90.20% and 99.90% acenaphthene, respectively and 99.90%, 97.90%, 98.40% and 99.50% fluorene, respectively. The PAH degrading microorganisms isolated during this study significantly reduced the concentrations of acenaphthene and fluorene and may be used on a larger, commercial scale to bioremediate PAH contaminated river systems.


Assuntos
Acenaftenos/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fluorenos/metabolismo , Rios/microbiologia , Bactérias/classificação , Biotransformação , África do Sul , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...