Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37772600

RESUMO

The incidence of feline obesity continues to rise despite it being a preventable disease. There are many risks and health perturbations associated with obesity, with several of those impacting a pet's quality of life, wellness, and longevity. Feline obesity is commonly studied, but most research has been focused on weight loss rather than weight gain. To our knowledge, feline studies have not examined the implications of overfeeding and weight gain on gastrointestinal transit time (GTT) nor the association it has with the fecal microbiota. Therefore, the objective of this study was to determine the effects of overfeeding and weight gain on apparent total tract digestibility (ATTD), GTT, blood hormones, serum metabolites, hematology, fecal microbiota populations, and voluntary physical activity of cats. Eleven lean adult spayed female cats [body weight (BW) = 4.11 ±â€…0.43 kg; body condition score = 5.41 ±â€…0.3; age = 5.22 ±â€…0.03 y] were used in a longitudinal weight gain study. After a 2-wk baseline phase, cats were allowed to overeat for 18 wk. A commercially available complete and balanced diet was fed during the baseline phase to identify the intake needed to maintain BW. Cats were then fed the same diet ad libitum to induce weight gain. Fecal samples, blood samples, and voluntary physical activity data were collected at baseline (week 0) and 6, 12, and 18 wk after weight gain. Fecal samples were collected for microbiota analysis, determination of ATTD, and GTT measurement while blood samples were collected for serum chemistry, hematology, and insulin and leptin measurements. Microbiota data were evaluated using QIIME2. All other measures were evaluated statistically using the mixed models procedure of SAS using repeated measures analysis, with time effects being the focus. A P < 0.05 was considered significant. The ATTD of dry matter (P = 0.0061), organic matter (P = 0.0130), crude protein (P < 0.0001), fat (P = 0.0002), and gross energy (P = 0.0002), and GTT (P = 0.0418) decreased with overfeeding and weight gain. Fecal bacterial alpha diversity measures were unchanged, but fecal bacterial beta diversity was impacted (P < 0.05) with overfeeding and weight gain. The relative abundances of 16 bacterial genera, including Bifidobacterium, Collinsella, Erysipelatoclostridium were affected (P < 0.05) by overfeeding and weight gain. In conclusion, overfeeding and subsequent weight gain reduced ATTD, reduced GTT, and caused changes to the fecal microbial community of adult cats.


Feline obesity continues to rise, impacting the wellness, quality of life, and longevity of cats. Understanding the metabolic and gastrointestinal changes that companion animals face with the onset of weight gain and obesity may help with future prevention and treatment plans. The implications of overfeeding and weight gain on gastrointestinal transit time (GTT) and its association with fecal microbiota populations have not been studied. Therefore, the objective of this study was to determine the effects of overfeeding and weight gain on apparent total tract digestibility, GTT, blood hormones, serum metabolites, hematology, fecal microbiota populations, and voluntary physical activity of cats. After a 2-week baseline phase, adult cats were allowed to overeat for 18 weeks. Fecal and blood samples were collected, and voluntary physical activity was measured using accelerometers over time. Dry matter, organic matter, protein, fat, and energy digestibilities and GTT were decreased with overfeeding and weight gain. Fecal bacterial beta diversity was impacted by overfeeding and weight gain, impacting the relative abundances of 1 bacterial phylum and 16 bacterial genera. In conclusion, overfeeding and subsequent weight gain reduced nutrient digestibility, reduced GTT and caused changes to the fecal microbial community of adult cats.

2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37773637

RESUMO

Feline obesity is a common and preventable disease, posing a myriad of health risks and detriments. Specially formulated diets and restricted feeding may serve as an intervention strategy to promote weight loss and improve feline health. In this study, our objective was to determine the effects of restricted feeding and weight loss on body composition, voluntary physical activity, blood hormones and metabolites, and fecal microbiota of overweight cats. Twenty-two overweight adult spayed female and neutered male cats [body weight (BW) = 5.70 ± 1.0 kg; body condition score (BCS) = 7.68 ± 0.6; age = 4 ± 0.4 yr] were used in a weight loss study. A control diet (OR) was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline (week 0), cats were allotted to OR or a test diet (FT) and fed to lose ~1.0% BW/wk for 24 wk. At baseline and 6, 12, 18, and 24 wk after weight loss, dual-energy x-ray absorptiometry scans were performed and blood samples were collected. Voluntary physical activity was measured at weeks 0, 8, 16, and 24. Fecal samples were collected at weeks 0, 4, 8, 12, 16, 20, and 24. Change from baseline data were analyzed statistically using the Mixed Models procedure of SAS, with P < 0.05 considered significant. Restricted feeding of both diets led to weight and fat mass loss, lower BCS, and lower blood triglyceride and leptin concentrations. Cats fed the FT diet had a greater reduction in blood triglycerides and cholesterol than cats fed the OR diet. Restricted feeding and weight loss reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations. Fecal valerate concentrations were affected by diet, with cats fed the OR diet having a greater reduction than those fed the FT diet. Fecal bacterial alpha diversity was not affected, but fecal bacterial beta diversity analysis showed clustering by diet. Restricted feeding and weight loss affected relative abundances of 7 fecal bacterial genera, while dietary intervention affected change from baseline relative abundances of 2 fecal bacterial phyla and 20 fecal bacterial genera. Our data demonstrate that restricted feeding promoted controlled and safe weight and fat loss, reduced blood lipids and leptin concentrations, and shifted fecal metabolites and microbiota. Some changes were also impacted by diet, highlighting the importance of ingredient and nutrient composition in weight loss diets.


The objective of this study was to determine the effects of diet, restricted feeding and weight loss on body composition, voluntary physical activity, blood hormones and metabolites, and fecal metabolites and microbiota of overweight cats. Overweight cats were allotted to a control diet (OR) or weight loss diet (FT) and fed to lose ~1.0% body weight/week for 24 wk. Body weight, body composition, and voluntary physical activity were measured, while fecal and blood samples were collected over time. Restricted feeding led to weight and fat mass loss, and lower blood triglyceride and leptin concentrations. Cats fed FT had a greater reduction in blood triglycerides and cholesterol than cats fed OR. Restricted feeding reduced fecal metabolite concentrations and affected relative abundances of 7 fecal bacterial genera. Fecal bacterial beta diversity analysis showed clustering by diet. Dietary intervention affected change from baseline relative abundances of 2 fecal bacterial phyla and 20 fecal bacterial genera. Our data demonstrate that restricted feeding promoted controlled and safe weight and fat loss, reduced blood lipids and leptin concentrations, and shifted fecal metabolites and microbiota. Some dietary differences were noted, highlighting the importance of ingredient and nutrient composition in weight loss diets.


Assuntos
Doenças do Gato , Microbiota , Gatos , Animais , Masculino , Feminino , Leptina , Sobrepeso/veterinária , Dieta/veterinária , Fezes/microbiologia , Redução de Peso , Composição Corporal , Bactérias , Ração Animal , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...