Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 209(3): 510-525, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817517

RESUMO

Coinhibition of TIGIT (T cell immunoreceptor with Ig and ITIM domains) and PD-1/PD-L1 (PD-1/L1) may improve response rates compared with monotherapy PD-1/L1 blockade in checkpoint naive non-small cell lung cancer with PD-L1 expression >50%. TIGIT mAbs with an effector-competent Fc can induce myeloid cell activation, and some have demonstrated effector T cell depletion, which carries a clinical liability of unknown significance. TIGIT Ab blockade translates to antitumor activity by enabling PVR signaling through CD226 (DNAM-1), which can be directly inhibited by PD-1. Furthermore, DNAM-1 is downregulated on tumor-infiltrating lymphocytes (TILs) in advanced and checkpoint inhibition-resistant cancers. Therefore, broadening clinical responses from TIGIT blockade into PD-L1low or checkpoint inhibition-resistant tumors, may be induced by immune costimulation that operates independently from PD-1/L1 inhibition. TNFSF14 (LIGHT) was identified through genomic screens, in vitro functional analysis, and immune profiling of TILs as a TNF ligand that could provide broad immune activation. Accordingly, murine and human bifunctional fusion proteins were engineered linking the extracellular domain of TIGIT to the extracellular domain of LIGHT, yielding TIGIT-Fc-LIGHT. TIGIT competitively inhibited binding to all PVR ligands. LIGHT directly activated myeloid cells through interactions with LTßR (lymphotoxin ß receptor), without the requirement for a competent Fc domain to engage Fcγ receptors. LIGHT costimulated CD8+ T and NK cells through HVEM (herpes virus entry mediator A). Importantly, HVEM was more widely expressed than DNAM-1 on T memory stem cells and TILs across a range of tumor types. Taken together, the mechanisms of TIGIT-Fc-LIGHT promoted strong antitumor activity in preclinical tumor models of primary and acquired resistance to PD-1 blockade, suggesting that immune costimulation mediated by LIGHT may broaden the clinical utility of TIGIT blockade.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/genética , Humanos , Camundongos , Células Mieloides/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
2.
ACS Pharmacol Transl Sci ; 2(5): 361-371, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-32259070

RESUMO

Regulation of cellular death is central to nearly all physiological routines and is dysregulated in virtually all diseases. Cell death occurs by two major processes, necrosis which culminates in a pervasive inflammatory response and apoptosis which is largely immunologically inert. As necrosis has long been considered an accidental, unregulated form of cellular death that occurred in response to a harsh environmental stimulus, it was largely ignored as a clinical target. However, recent elegant studies suggest that certain forms of necrosis can be reprogrammed. However, scant little is known about the molecules and pathways that orchestrate calcium-overload-induced necrosis, a main mediator of ischemia/reperfusion (IR)-induced cardiomyocyte cell death. To rectify this critical gap in our knowledge, we performed a novel genome-wide siRNA screen to identify modulators of calcium-induced necrosis in human muscle cells. Our screen identified multiple molecular circuitries that either enhance or inhibit this process, including lysosomal calcium channel TPCN1, mitophagy mediatorTOMM7, Ran-binding protein RanBP9, Histone deacetylase HDAC2, chemokine CCL11, and the Arp2/3 complex regulator glia maturation factor-γ (GMFG). Notably, a number of druggable enzymes were identified, including the proteasome ß5 subunit (encoded by PSMB5 gene), which controls the proteasomal chymotrypsin-like peptidase activity. Such findings open up the possibility for the discovery of pharmacological interventions that could provide therapeutic benefits to patients affected by myriad disorders characterized by excessive (or too little) necrotic cell loss, including but not limited to IR injury in the heart and kidney, chronic neurodegenerative disorders, muscular dystrophies, sepsis, and cancers.

3.
J Biol Chem ; 292(6): 2065-2079, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-27994061

RESUMO

Autophagy is an evolutionarily conserved intracellular degradation/recycling system that is essential for cellular homeostasis but is dysregulated in a number of diseases, including myocardial hypertrophy. Although it is clear that limiting or accelerating autophagic flux can result in pathological cardiac remodeling, the physiological signaling pathways that fine-tune cardiac autophagy are poorly understood. Herein, we demonstrated that stimulation of cardiomyocytes with phenylephrine (PE), a well known hypertrophic agonist, suppresses autophagy and that activation of focal adhesion kinase (FAK) is necessary for PE-stimulated autophagy suppression and subsequent initiation of hypertrophic growth. Mechanistically, we showed that FAK phosphorylates Beclin1, a core autophagy protein, on Tyr-233 and that this post-translational modification limits Beclin1 association with Atg14L and reduces Beclin1-dependent autophagosome formation. Remarkably, although ectopic expression of wild-type Beclin1 promoted cardiomyocyte atrophy, expression of a Y233E phosphomimetic variant of Beclin1 failed to affect cardiomyocyte size. Moreover, genetic depletion of Beclin1 attenuated PE-mediated/FAK-dependent initiation of myocyte hypertrophy in vivo Collectively, these findings identify FAK as a novel negative regulator of Beclin1-mediated autophagy and indicate that this pathway can facilitate the promotion of compensatory hypertrophic growth. This novel mechanism to limit Beclin1 activity has important implications for treating a variety of pathologies associated with altered autophagic flux.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Cardiomegalia/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Miócitos Cardíacos/patologia , Animais , Proteína Beclina-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptores Adrenérgicos alfa/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...