Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 100(3): 592-600, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30688598

RESUMO

Root-knot nematodes (Meloidogyne fallax and M. hapla) cause significant reductions in potato yield by reducing tuber quality. Concentrations of M. fallax and M. hapla DNA in soil were determined by quantitative polymerase chain reaction following sampling at planting and harvest within 78 fields across 3 years in Australia. Meloidogyne spp. were also detected using a tomato bioassay. M. fallax was more prevalent than M. hapla and DNA concentrations of M. fallax in soil were significantly higher in samples collected at harvest compared with those at planting. In contrast, M. hapla DNA in soil did not significantly change from planting to harvest. Using receiver operating characteristic curve analysis, M. fallax DNA in soil at planting and harvest was a highly accurate predictor of tuber damage at harvest and galling on tomato. Prediction accuracy for tuber damage was highest for M. fallax DNA compared with M. hapla or M. fallax + M. hapla. Both Meloidogyne spp. were detected in the peel of asymptomatic certified seed. For M. fallax, the addition of seedborne inoculum did not improve tuber damage predictions. This suggested that soilborne M. fallax populations contributed most substantially to tuber damage. These findings highlight the utility of this approach for predicting risk of crop damage from nematodes. The use of this technique as a practical management tool is discussed.

2.
Can J Microbiol ; 60(5): 267-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24779577

RESUMO

The rumen microbiota contributes to greenhouse gas emissions and has an impact on feed efficiency and ruminant product fatty acid composition. Dietary fat supplements have shown promise in reducing enteric methane production and in altering the fatty acid profiles of ruminant-derived products, yet in vivo studies on how these impact the rumen microbiota are limited. In this study, we investigated the rumen bacterial, archaeal, fungal, and ciliate protozoan communities of dairy cows fed diets supplemented with 4 levels of docosahexaenoic acid (DHA) (0, 25, 50, and 75 g·cow(-1)·day(-1)) and established linkages between microbial communities and production parameters. Supplementation with DHA significantly (P < 0.05) altered rumen bacterial and archaeal, including methanogenic archaeal, communities but had no significant (P > 0.05) effects on rumen fungal or ciliate protozoan communities. Rumen bacterial communities of cows receiving no DHA were correlated with increased saturated fatty acids (C18:0 and C11:0) in their milk. Furthermore, rumen bacterial communities of cows receiving a diet supplemented with 50 g DHA·cow(-1)·day(-1) were correlated with increases in monounsaturated fatty acids (C20:1n-9) and polyunsaturated fatty acids (C22:5n-3; C22:6n-3; C18:2 cis-9, trans-11; C22:3n-6; and C18:2n-6 trans) in their milk. The significant diet-associated changes in rumen archaeal communities observed did not result in altered enteric methane outputs in these cows.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Microbiota , Rúmen/microbiologia , Animais , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Feminino , Lactação , Metano/biossíntese , Leite , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
3.
PLoS One ; 9(4): e93893, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699870

RESUMO

Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼ 994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression.


Assuntos
Bactérias/genética , Fungos/genética , Rizosfera , Solo , DNA Fúngico/genética , Filogenia , Microbiologia do Solo , Austrália do Sul
4.
Plant Dis ; 96(3): 443-451, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30727140

RESUMO

The lack of accurate detection of Gaeumannomyces graminis var. tritici inoculum in soil has hampered efforts to predict the risk of severe take-all for wheat growers. The current study used a molecular method to quantify soil G. graminis var. tritici concentrations in commercial wheat fields in New Zealand and to compare them with the proportion of crops surpassing the thresholds for visible and moderate to severe take-all over three growing seasons. The study evaluated a soil G. graminis var. tritici DNA-based take-all prediction system developed in Australia, with four take-all risk categories. These categories were found to be useful for predicting disease severity in second wheat but did not clearly separate risk between fields in medium- and high-risk categories. A sigmoidal relationship was identified between inoculum concentration and the proportion of fields exceeding the two disease thresholds. A logistic response curve was used to further examine this relationship and evaluate the boundaries between take-all risk categories. G. graminis var. tritici boundaries between medium- and high-risk categories were clustered near or within the upper plateau of the relationship. Alternative G. graminis var. tritici boundaries for a three-category system were identified that provided better separation of take-all risk between categories. This information could improve prediction of the risk of severe take-all.

5.
Appl Environ Microbiol ; 77(17): 5868-78, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21742925

RESUMO

Three broiler feeding trials were investigated in order to identify gut bacteria consistently linked with improvements in bird performance as measured by feed efficiency. Trials were done in various geographic locations and varied in diet composition, broiler breed, and bird age. Gut microbial communities were investigated using microbial profiling. Eight common performance-linked operational taxonomic units (OTUs) were identified within both the ilea (180, 492, and 564-566) and ceca (140-142, 218-220, 284-286, 312, and 482) across trials. OTU 564-566 was associated with lower performance, while OTUs 140-142, 482, and 492 were associated with improved performance. Targeted cloning and sequencing of these eight OTUs revealed that they represented 26 bacterial species or phylotypes which clustered phylogenetically into seven groups related to Lactobacillus spp., Ruminococcaceae, Clostridiales, Gammaproteobacteria, Bacteroidales, Clostridiales/Lachnospiraceae, and unclassified bacteria/clostridia. Where bacteria were identifiable to the phylum level, they belonged predominantly to the Firmicutes, with Bacteroidetes and Proteobacteria also identified. Some of the potential performance-related phylotypes showed high sequence identity with classified bacteria (Lactobacillus salivarius, Lactobacillus aviarius, Lactobacillus crispatus, Faecalibacterium prausnitzii, Escherichia coli, Gallibacterium anatis, Clostridium lactatifermentans, Ruminococcus torques, Bacteroides vulgatus, and Alistipes finegoldii). The 16S rRNA gene sequence information generated will allow quantitative assays to be developed which will enable elucidations of which of these phylotypes are truly performance related. This information could be used to monitor strategies to improve feed efficiency and feed formulation for optimal gut health.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biodiversidade , Ceco/microbiologia , Galinhas/microbiologia , Dieta/métodos , Íleo/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Peso Corporal , Galinhas/crescimento & desenvolvimento , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Appl Environ Microbiol ; 77(10): 3380-90, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21441326

RESUMO

The effects of avilamycin, zinc bacitracin, and flavophospholipol on broiler gut microbial community colonization and bird performance in the first 17 days posthatch were investigated. Significant differences in gut microbiota associated with gut section, dietary treatment, and age were identified by terminal restriction fragment length polymorphism (T-RFLP), although no performance-related differences between dietary treatments were detected. Similar age-related shifts in the gut microbiota were identified regardless of diet but varied between the ilea and ceca. Interbird variabilities in ileal bacterial communities were reduced (3 to 7 days posthatch) in chicks fed with feed containing antimicrobial agents. Avilamycin and flavophospholipol had the most consistent effect on gut microbial communities. Operational taxonomic units (OTU) linked to changes in gut microbiota in birds on antimicrobial-supplemented diets were characterized and identified. Some OTUs could be identified to the species level; however, the majority could be only tentatively classified to the genus, family, order, or domain level. OTUs 140 to 146 (Lachnospiraceae), OTU 186/188 (Lactobacillus johnsonii), OTU 220 (Lachnospiraceae), OTUs 284 to 288 (unclassified bacterial spp. or Ruminococcaceae), OTU 296/298 (unclassified bacterium or Clostridiales), and OTU 480/482 (Oxalobacteraceae) were less prevalent in the guts of chicks fed antimicrobial-supplemented diets. OTU 178/180 (Lactobacillus crispatus), OTU 152 (Lactobacillus reuteri or unclassified Clostridiales), OTU 198/200 (Subdoligranulum spp.), and OTU 490/492 (unclassified bacterium or Enterobacteriaceae) were less prevalent in the gut of chicks raised on the antimicrobial-free diet. The identification of key bacterial species influenced by antimicrobial-supplemented feed immediately posthatch may assist in the formulation of diets that facilitate beneficial gut microbial colonization and, hence, the development of alternatives to current antimicrobial agents in feed for sustainable poultry production.


Assuntos
Anti-Infecciosos/administração & dosagem , Bactérias/efeitos dos fármacos , Biodiversidade , Galinhas/microbiologia , Dieta , Trato Gastrointestinal/microbiologia , Animais , Bacitracina/administração & dosagem , Bactérias/classificação , Bactérias/isolamento & purificação , Bambermicinas/administração & dosagem , Análise por Conglomerados , DNA/genética , DNA/isolamento & purificação , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Oligossacarídeos/administração & dosagem , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Biotechnol Adv ; 28(6): 706-14, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20488239

RESUMO

Marine pest incursions can cause significant ongoing damage to aquaculture, biodiversity, fisheries habitat, infrastructure and social amenity. They represent a significant and ongoing economic burden. Marine pests can be introduced by several vectors including aquaculture, aquarium trading, commercial shipping, fishing, floating debris, mining activities and recreational boating. Despite the inherent risks, there is currently relatively little routine surveillance of marine pest species conducted in the majority of countries worldwide. Accurate and rapid identification of marine pest species is central to early detection and management. Traditional techniques (e.g. physical sampling and sorting), have limitations, which has motivated some progress towards the development of molecular diagnostic tools. This review provides a brief account of the techniques traditionally used for detection and describes developments in molecular-based methods for the detection and surveillance of marine pest species. Recent advances provide a platform for the development of practical, specific, sensitive and rapid diagnosis and surveillance tools for marine pests for use in effective prevention and control strategies.


Assuntos
DNA/análise , Técnicas de Diagnóstico Molecular/métodos , Controle de Pragas/métodos , Água do Mar/parasitologia , Animais , DNA/genética , DNA/isolamento & purificação , Meio Ambiente
8.
Syst Appl Microbiol ; 32(8): 549-57, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19748753

RESUMO

Strains of Xanthomonas translucens have caused dieback in the Australian pistachio industry for the last 15 years. Such pathogenicity to a dicotyledonous woody host contrasts with that of other pathovars of X. translucens, which are characterized by their pathogenicity to monocotyledonous plant families. Further investigations, using DNA-DNA hybridization, gyrB gene sequencing and integron screening, were conducted to confirm the taxonomic status of the X. translucens pathogenic to pistachio. DNA-DNA hybridization provided a clear classification, at the species level, of the pistachio pathogen as a X. translucens. In the gyrB-based phylogeny, strains of the pistachio pathogen clustered among the X. translucens pathovars as two distinct lineages. Integron screening revealed that the cassette arrays of strains of the pistachio pathogen were different from those of other Xanthomonas species, and again distinguished two groups. Together with previously reported pathogenicity data, these results confirm that the pistachio pathogen is a new pathovar of X. translucens and allow hypotheses about its origin. The proposed name is Xanthomonas translucens pv. pistaciae pv. nov.


Assuntos
Pistacia/microbiologia , Xanthomonas/genética , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Girase/genética , Integrons/genética , Hibridização de Ácido Nucleico , Filogenia , Xanthomonas/classificação , Xanthomonas/patogenicidade
9.
J Econ Entomol ; 101(6): 1934-43, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19133477

RESUMO

Grape phylloxera, Daktulosphaira vitifoliae (Fitch) (Hemiptera Phylloxeridae) is a damaging pest of grapevines (Vitis spp.) around the world, and the management of this pest requires early detection of infestations. Here, we describe the development and validation of a sensitive DNA test for grape phylloxera that can be applied to soil. Species-specific primers were developed for grape phylloxera in the internal transcribed space region 2, and their specificity was confirmed after thorough screening by using a wide range of vineyard organisms and aphid genera. Preliminary testing of the detection limits of the grape phylloxera-specific primers was conducted using field-sourced soil types spiked with a known number of grape phylloxera. The assay was converted to a real-time polymerase chain reaction format (TaqMan MGB). This assay, in combination with DNA extraction from soil, can detect phylloxera crawlers added to soil. The assay was evaluated in the field at a recently detected grape phylloxera infestation site from the Yarra Valley in Victoria, Australia. The DNA assay proved to be substantially more sensitive than a standard ground survey for detecting grape phylloxera presence on vine roots in the infested vineyard. Moreover, unlike the ground survey, the assay provided quantitative information on grape phylloxera infestations, because grape phylloxera DNA concentrations in samples from vines closely matched the numbers of grape phylloxera crawlers collected with emergence traps placed at the base of vines. Unlike other detection techniques, the method can be applied at any time of the year, and it can be potentially modified to provide specific information on the virulence levels of the particular grape phylloxera genotypes responsible for any new infestations.


Assuntos
Afídeos/genética , Controle de Insetos/métodos , Solo , Vitis , Animais , DNA/análise , Primers do DNA , Genótipo , Reação em Cadeia da Polimerase , Densidade Demográfica
10.
Funct Plant Biol ; 35(2): 124-130, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32688763

RESUMO

We investigated the roles of naturally occurring arbuscular mycorrhizal (AM) fungi in phosphorus (P) uptake by wheat (Triticum aestivum L.) in a calcareous, P-fixing soil. Plants grew in a main pot containing autoclaved soil (NM) or autoclaved soil mixed with non-autoclaved soil (to provide inoculum of naturally occurring AM fungi; AM). Granular (GP; monoammonium phosphate) or fluid (FP; ammonium polyphosphate) fertilisers were applied in small compartments (PCs) within a main pot, to which either roots plus hyphae (-Mesh) or hyphae only (+Mesh) had access. Controls received no additional P (NP). Inoculated plants were well colonised by AM fungi. AM growth depressions were observed in -Mesh treatments with NP and GP, but not with FP. Neither AM growth nor P responses were observed in +Mesh treatments. AM plants had much higher P uptake than NM plants, regardless of the P and mesh treatments. Total P uptake by NM plants increased with FP in -Mesh, but was unaffected by either form of P in the +Mesh treatments. Total P uptake by AM plants was similar between -Mesh and +Mesh treatments, regardless of applied P, showing that roots plus hyphae and hyphae alone have the same ability to obtain P. Thus, hyphae can take over the roles of roots in P uptake when roots are not able to access P sources.

11.
Appl Environ Microbiol ; 74(3): 783-91, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18065621

RESUMO

A high-throughput microbial profiling tool based on terminal restriction fragment length polymorphism was developed to monitor the poultry gut microbiota in response to dietary manipulations. Gut microbial communities from the duodena, jejuna, ilea, and ceca of 48 birds fed either a barley control diet or barley diet supplemented with exogenous enzymes for degrading nonstarch polysaccharide were characterized by using multivariate statistical methods. Analysis of samples showed that gut microbial communities varied significantly among gut sections, except between the duodenum and jejunum. Significant diet-associated differences in gut microbial communities were detected within the ileum and cecum only. The dissimilarity in bacterial community composition between diets was 73 and 66% within the ileum and cecum, respectively. Operational taxonomic units, representing bacterial species or taxonomically related groups, contributing to diet-associated differences were identified. Several bacterial species contributed to differences between diet-related gut microbial community composition, with no individual bacterial species contributing more than 1 to 5% of the total. Using canonical analysis of principal coordinates biplots, we correlated differences in gut microbial community composition within the ileum and cecum to improved performance, as measured by apparent metabolizable energy. This is the first report that directly links differences in the composition of the gut microbial community with improved performance, which implies that the presence of specific beneficial and/or absence of specific detrimental bacterial species may contribute to the improved performance in these birds.


Assuntos
Ração Animal , Bactérias/classificação , Galinhas/microbiologia , Metabolismo Energético , Intestinos/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Ceco/microbiologia , Galinhas/metabolismo , Impressões Digitais de DNA/métodos , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Ecossistema , Hordeum , Íleo/microbiologia , Mucosa Intestinal/metabolismo , Análise Multivariada , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
12.
FEMS Microbiol Ecol ; 47(2): 143-52, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19712330

RESUMO

There are an increasing number of assays available for fungal plant pathogens based on DNA technology. We have developed such an assay for Gaeumannomyces graminis var. tritici (Ggt) in soil, using slot-blot hybridisation. To ensure the validity of DNA-based soil assays for the fungus, it is important to determine the stability of Ggt DNA in soil. This study was undertaken to quantify the DNA degradation of dead Ggt in soil using a DNA-based assay. Mycelia were killed using various treatments, then DNA was extracted and estimated by a slot-blot hybridisation technique using the specific Ggt DNA probe, pG158. Mycelia were also killed using a fungicide (triadimefon) at a concentration of 150-250 microg ml(-1). The amount of detectable DNA of Ggt, killed using triadimefon, declined by 82-93%. Inoculum in the form of diseased wheat roots, artificially inoculated ryegrass seed, particulate soil organic matter and whole soil was killed using heat-treatment. The amount of detectable DNA of Ggt declined markedly (90%) in both heat-treated roots and inoculated ryegrass seeds, and declined by 50% in both treated soil and soil organic matter. The rate of DNA degradation of Ggt in soil varied with the type of inoculum. The amount of detectable DNA of Ggt in dead mycelia declined by 99.8% after 4 days of incubation in soil. No DNA was detected after 8 days of incubation. In contrast, Ggt DNA in live mycelia declined by 70% after 8 days of incubation and declined to 10% of original DNA level after 32 days. In ground ryegrass seed inoculum, DNA in both killed and live Ggt declined by 50% after 8 days. In diseased roots, DNA from both live and killed Ggt did not appear to decline over 16 days. Estimates of the amount of Ggt in the soil using a DNA-based assay reflect both live and dead populations of the fungus. The rate of breakdown of DNA of the dead fungus is very high and the presence of dead fungi in roots probably a rare event so the DNA from dead fungus probably contributes little to the total DNA level.


Assuntos
Ascomicetos/química , DNA Fúngico/análise , Microbiologia do Solo , Solo/análise , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , DNA Fúngico/isolamento & purificação , DNA Fúngico/metabolismo , Temperatura Alta , Lolium/microbiologia , Micélio/crescimento & desenvolvimento , Hibridização de Ácido Nucleico , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Sementes/microbiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...