Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145289

RESUMO

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Assuntos
Proteína Relacionada com Agouti , Fator 4 Semelhante a Kruppel , Neurônios , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Sci Adv ; 9(48): eadg8118, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039359

RESUMO

Syncytiotrophoblast stress is theorized to drive development of preeclampsia, but its molecular causes and consequences remain largely undefined. Multiple hormones implicated in preeclampsia signal via the Gαq cascade, leading to the hypothesis that excess Gαq signaling within the syncytiotrophoblast may contribute. First, we present data supporting increased Gαq signaling and antioxidant responses within villous and syncytiotrophoblast samples of human preeclamptic placenta. Second, Gαq was activated in mouse placenta using Cre-lox and DREADD methodologies. Syncytiotrophoblast-restricted Gαq activation caused hypertension, kidney damage, proteinuria, elevated circulating proinflammatory factors, decreased placental vascularization, diminished spiral artery diameter, and augmented responses to mitochondrial-derived superoxide. Administration of the mitochondrial-targeted antioxidant Mitoquinone attenuated maternal proteinuria, lowered circulating inflammatory and anti-angiogenic mediators, and maintained placental vascularization. These data demonstrate a causal relationship between syncytiotrophoblast stress and the development of preeclampsia and identify elevated Gαq signaling and mitochondrial reactive oxygen species as a cause of this stress.


Assuntos
Pré-Eclâmpsia , Animais , Camundongos , Gravidez , Feminino , Humanos , Trofoblastos , Placenta , Antioxidantes/farmacologia , Proteínas de Ligação ao GTP , Proteinúria
3.
Cell Rep ; 42(8): 112935, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37540598

RESUMO

Resting metabolic rate (RMR) adaptation occurs during obesity and is hypothesized to contribute to failed weight management. Angiotensin II (Ang-II) type 1 (AT1A) receptors in Agouti-related peptide (AgRP) neurons contribute to the integrative control of RMR, and deletion of AT1A from AgRP neurons causes RMR adaptation. Extracellular patch-clamp recordings identify distinct cellular responses of individual AgRP neurons from lean mice to Ang-II: no response, inhibition via AT1A and Gαi, or stimulation via Ang-II type 2 (AT2) receptors and Gαq. Following diet-induced obesity, a subset of Ang-II/AT1A-inhibited AgRP neurons undergo a spontaneous G-protein "signal switch," whereby AT1A stop inhibiting the cell via Gαi and instead begin stimulating the cell via Gαq. DREADD-mediated activation of Gαi, but not Gαq, in AT1A-expressing AgRP cells stimulates RMR in lean and obese mice. Thus, loss of AT1A-Gαi coupling within the AT1A-expressing AgRP neuron subtype represents a molecular mechanism contributing to RMR adaptation.


Assuntos
Neurônios , Obesidade , Receptor Tipo 1 de Angiotensina , Animais , Camundongos , Proteína Relacionada com Agouti/metabolismo , Angiotensina II/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
4.
Hypertension ; 79(12): 2843-2853, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259376

RESUMO

BACKGROUND: RGS (regulator of G protein signaling) family members catalyze the termination of G protein signaling cascades. Single nucleotide polymorphisms in the RGS2 gene in humans have been linked to hypertension, preeclampsia, and anxiety disorders. Mice deficient for Rgs2 (Rgs2Null) exhibit hypertension, anxiety, and altered adipose development and function. METHODS: To study cell-specific functions of RGS2, a novel gene-targeted mouse harboring a conditional allele for the Rgs2 gene (Rgs2Flox) was developed. These mice were bred with mice expressing Cre-recombinase via the Agouti-related peptide locus (Agrp-Cre) to cause deletion of Rgs2 from all cells expressing Agrp (Rgs2Agrp-KO), or a novel transgenic mouse expressing Cre-recombinase via the ANG (angiotensin) type 1A receptor (Agtr1a/ AT1A) promoter encoded in a bacterial artificial chromosome (BAC-AT1A-Cre) to delete Rgs2 in all Agtr1a-expressing cells (Rgs2AT1A-KO). RESULTS: Whereas Rgs2Flox, Rgs2Agrp-KO, and BAC-AT1A-Cre mice exhibited normal growth and survival, Rgs2AT1A-KO exhibited pre-weaning lethality. Relative to littermates, Rgs2Agrp-KO exhibited reduced fat gains when maintained on a high fat diet, associated with increased energy expenditure. Similarly, surviving adult Rgs2AT1A-KO mice also exhibited increased energy expenditure. Surprisingly, given the hypertensive phenotype previously reported for Rgs2Null mice and evidence supporting a role for RGS2 in terminating AT1A signaling in various cell types, Rgs2AT1A-KO mice exhibited normal blood pressure, ingestive behaviors, and renal functions, both before and after chronic infusion of ANG (490 ng/kg/min, sc). CONCLUSIONS: These results demonstrate the development of a novel mouse with conditional expression of Rgs2 and illustrate the role of Rgs2 within selected cell types for cardiometabolic control.


Assuntos
Hipertensão , Proteínas RGS , Animais , Camundongos , Proteína Relacionada com Agouti , Hipertensão/genética , Camundongos Knockout , Camundongos Transgênicos , Receptor Tipo 1 de Angiotensina/genética , Recombinases , Proteínas RGS/genética
5.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R410-R421, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816717

RESUMO

The renin-angiotensin system (RAS) within the brain is implicated in the control of fluid and electrolyte balance, autonomic functions, blood pressure, and energy expenditure. Mouse models are increasingly used to explore these mechanisms; however, sex and dose dependencies of effects elicited by chronic intracerebroventricular (ICV) angiotensin II (ANG II) infusion have not been carefully established in this species. To examine the interactions among sex, body mass, and ICV ANG II on ingestive behaviors and energy balance, young adult C57BL/6J mice of both sexes were studied in a multiplexed metabolic phenotyping system (Promethion) during chronic infusion of ANG II (0, 5, 20, or 50 ng/h). At these infusion rates, ANG II caused accelerating dose-dependent increases in drinking and total energy expenditure in male mice, but female mice exhibited a complex biphasic response with maximum responses at 5 ng/h. Body mass differences did not account for sex-dependent differences in drinking behavior or total energy expenditure. In contrast, resting metabolic rate was similarly increased by ICV ANG II in a dose-dependent manner in both sexes after correction for body mass. We conclude that chronic ICV ANG II stimulates water intake, resting, and total energy expenditure in male C57BL/6J mice following straightforward accelerating dose-dependent kinetics, but female C57BL/6J mice exhibit complex biphasic responses to ICV ANG II. Furthermore, control of resting metabolic rate by ANG II is dissociable from mechanisms controlling fluid intake and total energy expenditure. Future studies of the sex dependency of ANG II within the brain of mice must be designed to carefully consider the biphasic responses that occur in females.


Assuntos
Angiotensina II , Angiotensina II/farmacologia , Animais , Pressão Sanguínea/fisiologia , Feminino , Homeostase , Infusões Intraventriculares , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Cells ; 10(11)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34831277

RESUMO

Preeclampsia is a life-threatening pregnancy-associated cardiovascular disorder characterized by hypertension and proteinuria at 20 weeks of gestation. Though its exact underlying cause is not precisely defined and likely heterogenous, a plethora of research indicates that in some women with preeclampsia, both maternal and placental vascular dysfunction plays a role in the pathogenesis and can persist into the postpartum period. Potential abnormalities include impaired placentation, incomplete spiral artery remodeling, and endothelial damage, which are further propagated by immune factors, mitochondrial stress, and an imbalance of pro- and antiangiogenic substances. While the field has progressed, current gaps in knowledge include detailed initial molecular mechanisms and effective treatment options. Newfound evidence indicates that vasopressin is an early mediator and biomarker of the disorder, and promising future therapeutic avenues include mitigating mitochondrial dysfunction, excess oxidative stress, and the resulting inflammatory state. In this review, we provide a detailed overview of vascular defects present during preeclampsia and connect well-established notions to newer discoveries at the molecular, cellular, and whole-organism levels.


Assuntos
Vasos Sanguíneos/fisiopatologia , Pré-Eclâmpsia/fisiopatologia , Animais , Vasos Sanguíneos/patologia , DNA Mitocondrial/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Estresse Oxidativo , Pré-Eclâmpsia/patologia , Gravidez , Receptor Toll-Like 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...