Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Vet Sci Med ; 7(1): 1-9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620482

RESUMO

Poor culture conditions in low input ponds make fish highly susceptible to infectious pathogens which lead to diseases and mortalities yet the effects of probiotics on immunity, gut microbiota and microbiological quality of fish in low input ponds are unknown. Nile tilapia, Oreochromis niloticus fingerlings (40 g) were randomly stocked at 50 fish m-3 in 1.25 m3 cages in low input ponds. The fish were fed on diets supplemented with either Saccharomyces cerevisiae (1 × 1010 CFU g-1) or Bacillus subtilis (1 × 109 CFU g-1) at six levels: Diet 0 (No probiotic); S. cerevisiae at 2 g kg-1 (Diet 1); 4 g kg-1 (Diet 2) and 6 g kg-1 (Diet 3) and B. subtilis at 5 g kg-1 (Diet 4); 10 g kg-1 (Diet 5) and 15 g kg-1 (Diet 6) for 180 days. Results indicate that hemato-immunological parameters (hemoglobin (Hb), red blood cells (RBC), white blood cells (WBC) serum protein, albumin, globulin and lysozyme activity) were significantly higher in fish fed on probiotic treated diets compared to the control (P < 0.05). On the contrary, fish fed on Diet 6 presented significantly similar Hb and globulin values compared to the control (P > 0.05). Additionally, fish fed on probiotic treated diets retained the probiotics in their guts and lower microbial load was realized in their muscle (P < 0.05). In conclusion, B. subtilis and S. cerevisiae supplementation in diets of Nile tilapia reared in low input ponds improves immunity, manipulates gut microbiota and enhances fish flesh quality.

2.
Int J Vet Sci Med ; 6(2): 141-148, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30564588

RESUMO

Warm water aquaculture is widely practiced in Kenya and is dominated by the culture of Nile tilapia (Oreochromis niloticus) (75% of total production) followed by African catfish (Clarias gariepinus) at 18%. Aquaculture started in Kenya in 1920's and has been on upward trend until 2014 when it peaked at 24,096 MT. However, production reduced drastically in the past 3 years, with 14,952 metric tonnes (MT) reported in 2016. Most farmers practice earthen pond based semi-intensive culture system. Commercial intensive culture of Nile tilapia (O. niloticus) in cages in Lake Victoria has grown significantly in the last five years with a production of 12 million kg of fish every cycle (about 8 months). Recirculation aquaculture system (RAS) is also gaining popularity mainly in intensive hatcheries. The freshwater cages have been marred by increasing frequencies of fish kills with obvious financial and environmental implications. Although limited information exists on fish disease outbreaks across the country, certain well known diseases in farmed fish have been reported. These include; fungal, mainly saprolegniasis, bacterial, mainly hemorrhagic disease and pop-eye diseases. Parasites have also been documented in farmed O. niloticus and C. gariepinus. Although prophylactic treatments are used in some hatcheries in order to prevent infections, limited biosecurity measures are in place to prevent diseases in farmed fish. This is because of inadequate knowledge of the economics of fish diseases, poor infrastructure and inadequate human resource specialized in fish diseases. This review describes the aquaculture production and health mangement practices of farmed fish in Kenya in order to document actions required for effective monitoring and regulation of future fish health problems across the country.

3.
Environ Monit Assess ; 188(8): 483, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27456696

RESUMO

Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) regulated by the Stockholm Convention (2001). Although their production and use was stopped almost three decades ago, PCBs are environmental persistent, toxic, and bioaccumulate in biota. We assessed the levels of 7 PCB congeners (IUPAC nos. 28, 52, 101, 118, 138, 153, and 180) in sediment and fish (Oreochromis niloticus, Lates niloticus, and Rastrineobola argentea) and evaluated the potential of cestode fish endoparasite (Monobothrioides sp., Proteocephalaus sp., and Ligula intestinalis) as biomonitors of PCBs in Lake Victoria, Kenya. The median concentration of Σ7PCBs in sediments and fish were 2.2-96.3 µg/kg dw and 300-3,000 µg/kg lw, respectively. At all the sampling sites, CB138, CB153, and CB180 were the dominant PCB congeners in sediment and fish samples. Compared to the muscle of the piscine host, Proteocephalaus sp. (infecting L. niloticus) biomagnified PCBs ×6-14 while Monobothrioides sp. (infecting O. niloticus) biomagnified PCBs ×4-8. Meanwhile, L. intestinalis (infecting R. argentea) biomagnified PCBs ×8-16 compared to the muscle of unparasitized fish. We demonstrate the occurrence of moderate to high levels of PCB in sediments and fish in Lake Victoria. We also provide evidence that fish parasites bioaccumulate higher levels of PCBs than their piscine hosts and therefore provide a promising biomonitor of PCBs. We urge further a long-term study to validate the use of the above cestode fish parasites as biomonitoring tools for PCBs.


Assuntos
Cestoides/química , Cyprinidae/parasitologia , Monitoramento Ambiental/métodos , Lagos/química , Bifenilos Policlorados/análise , Animais , Cestoides/crescimento & desenvolvimento , Cestoides/metabolismo , Cyprinidae/metabolismo , Quênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...