Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 222: 121521, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167231

RESUMO

Mycotoxins produced by Fusarium species including trichothecenes, zearalenone and fumonisins, can co-contaminate food and feed throughout the supply chain, including cereal grains and animal feeds. There is an increasing demand to enhance global food security by improving the monitoring of mycotoxins throughout our food supply chain. For time and cost-efficient analysis, rapid tests capable of detecting multiple toxins from a single sample are ideal. Considering these current trends in mycotoxin testing, this project examined the feasibility of using both a portable and non-portable mass-based biosensor for multiplex mycotoxin detection. The biosensor was a mass sensitive microarray (MSMA) which consisted of 4 × 16 miniaturized mass sensitive transducer pixels based on solidly mounted resonator (SMR) technology. Functionalisation of individual pixels on the sensor surface using nano-spotting technology for the simultaneous and semi-quantitative detection of three regulated mycotoxins: T2-toxin (T2) zearalenone (ZEN), and fumonisin B1 (FumB1) was examined. With the integration of portable and non-portable microfluidic devices for antibody and standard sample injections, competitive inhibition assays were developed followed by singleplex and multiplex calibration curves. The characteristics and performance of the MSMA were evaluated including sensitivity which was determined as the concentration causing 50% inhibition. Sensitivity of singleplex assays using the portable microfluidic device (PMD) were 1.3 ng/ml, 2.0 ng/ml and 6.8 ng/ml for T2, FumB1 and ZEN, respectively. Sensitivity of the multiplex assay again using the PMD was 6.1 ng/ml, 3.6 ng/ml and 2.4 ng/ml for T2, FumB1 and ZEN, respectively. The PMD was an easy to use and highly sensitive screening tool which has been demonstrated for the multiplex detection of three regulated mycotoxins. Analysis was in real time and results were fully digital. Since detection of analytes was by mass it was both a label-free and cost-efficient method proposed method of analysis for mycotoxins.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Zearalenona , Animais , Estudos de Viabilidade , Contaminação de Alimentos/análise , Imunoensaio , Limite de Detecção , Peso Molecular , Micotoxinas/análise , Zearalenona/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...