Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 31(7): 764-779.e8, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311459

RESUMO

Cdc48 (VCP/p97) is a major AAA-ATPase involved in protein quality control, along with its canonical cofactors Ufd1 and Npl4 (UN). Here, we present novel structural insights into the interactions within the Cdc48-Npl4-Ufd1 ternary complex. Using integrative modeling, we combine subunit structures with crosslinking mass spectrometry (XL-MS) to map the interaction between Npl4 and Ufd1, alone and in complex with Cdc48. We describe the stabilization of the UN assembly upon binding with the N-terminal-domain (NTD) of Cdc48 and identify a highly conserved cysteine, C115, at the Cdc48-Npl4-binding interface which is central to the stability of the Cdc48-Npl4-Ufd1 complex. Mutation of Cys115 to serine disrupts the interaction between Cdc48-NTD and Npl4-Ufd1 and leads to a moderate decrease in cellular growth and protein quality control in yeast. Our results provide structural insight into the architecture of the Cdc48-Npl4-Ufd1 complex as well as its in vivo implications.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/química , Saccharomyces cerevisiae/metabolismo , Ligação Proteica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Biomolecules ; 11(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809923

RESUMO

Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.


Assuntos
Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Animais , Cisteína/metabolismo , Humanos , Oxirredução , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...