Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38702847

RESUMO

Sandy sediments of lowland streams are transported as migrating ripples. Benthic microorganisms colonizing sandy grains are exposed to frequent moving-resting cycles and are believed to be shaped by two dominant environmental factors: mechanical stress during the moving phase causing biofilm abrasion, and alternating light-dark cycles during the resting phase. Our study consisted of two laboratory experiments and aimed to decipher which environmental factor causes the previously observed hampered sediment-associated microbial activity and altered community structure during ripple migration. The first experiment tested the effect of three different migration velocities under comparable light conditions. The second experiment compared migrating and stationary sediments under either constant light exposure or light oscillation. We hypothesized that microbial activity and community structure would be more strongly affected by (1) higher compared to lower migration velocities, and by (2) light oscillation compared to mechanical stress. Combining the results from both experiments, we observed lower microbial activity and an altered community structure in sediments exposed to light oscillation, whereas migration velocity had less impact on community activity and structure. Our findings indicate that light oscillation is the predominating environmental factor acting during ripple migration, resulting in an increased vulnerability of light-dependent photoautotrophs and a possible shift toward heterotrophy.


Assuntos
Sedimentos Geológicos , Luz , Sedimentos Geológicos/microbiologia , Bactérias/efeitos da radiação , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Microbiota , Rios/microbiologia , Estresse Mecânico , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação
2.
Sci Total Environ ; 659: 841-850, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096414

RESUMO

Temperate low order streams increasingly experience intermittency and drying due to climate change. In comparison to well-studied Mediterranean streams, drying events in canopied temperate streams occur under higher ambient humidity which probably affects the metabolic response to drying. Previous work on drying sediments (in temperate streams) did not consider the interactions of trophic levels. We hypothesized that preservation of sediment moisture due to high humidity increases resistance to drying in temperate streambed biofilms and fast resilience of biofilm activity after flow resumption. We also expected the presence of macroinvertebrate grazers to modulate the biofilm response to dry-rewet stress. Following a two-level factorial design in 24 microcosms, we tested the effect of drying intensity (moderate and intense) and grazer presence and absence (P. antipodarum) on the activity of biofilm colonizing shallow hyporheic sediment. We measured the community respiration over a drying period of 27 days, a single rewetting event and a follow-up of three days. Grazer presence stimulated biofilm community respiration (CRmic) in the permanently wet control, but decreased biofilm resistance to desiccation (<0.2% of pre-disturbed activity), regardless of drying intensity. In the absence of grazers, higher atmospheric humidity in moderately drying microcosms resulted in maintaining a film of adhesive water and low CRmic (29% of pre-disturbed respiration) until the end of the drying period. After flow resumption, the CRmic increased within 8 h, achieving 79-83% of pre-disturbed respiration (no grazers) and 15-41% (with grazers), respectively. Results show that short dry periods in temperate streams, even under high humidity, impact the streambed biofilm community negatively. The complex response and strong effect of grazer presence indicates that experiments including interactions of trophic levels and settings mimicking environmental factors during dry-rewet stress are needed.


Assuntos
Biofilmes , Mudança Climática , Secas , Microbiota/fisiologia , Rios/microbiologia , Caramujos/fisiologia , Animais , Comportamento Alimentar , Alemanha , Umidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...