Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(9): 1438-1451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38044577

RESUMO

BACKGROUND AND PURPOSE: The TRPM8 ion channel is involved in innocuous cold sensing and has a potent anti-inflammatory action. Its activation by lower temperature or chemical agonists such as menthol and icilin induces analgesic effects, reversing hypersensitivity and reducing chronic pain. On the other hand, prostacyclin (PGI2) enhances pain and inflammation by activating the IP receptors. Due to the critical roles of TRPM8 and IP receptors in the regulation of inflammatory pain, and considering their overlapping expression pattern, we analysed the functional interaction between human TRPM8 and IP receptors. EXPERIMENTAL APPROACH: We transiently expressed human TRPM8 channels and IP receptors in HEK293T cells and carried out intracellular calcium and cAMP measurements. Additionally, we cultured neurons from the dorsal root ganglia (DRGs) of mice and determined the increase in intracellular calcium triggered by the TRPM8 agonist, icilin, in the presence of the IP receptor agonist cicaprost, the IP receptor antagonist Cay10441, and the Gq/11 inhibitor YM254890. KEY RESULTS: Activation of IP receptors by selective agonists (cicaprost, beraprost, and iloprost) inhibited TRPM8 channel function, independently of the Gs-cAMP pathway. The potent inhibition of TRPM8 channels by IP receptor agonists involved Gq/11 coupling. These effects were also observed in neurons isolated from murine DRGs. CONCLUSIONS AND IMPLICATIONS: Our results demonstrate an unusual signalling pathway of IP receptors by coupling to Gq/11 proteins to inhibit TRPM8 channel function. This pathway may contribute to a better understanding of the role of TRPM8 channels and IP receptors in regulating pain and inflammation.


Assuntos
Cálcio , Canais de Cátion TRPM , Animais , Camundongos , Humanos , Receptores de Epoprostenol , Cálcio/metabolismo , Células HEK293 , Canais de Cátion TRPM/metabolismo , Mentol/farmacologia , Dor , Inflamação , Proteínas de Membrana/metabolismo
2.
Eur J Pharmacol ; 939: 175467, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36543288

RESUMO

Artemisinin and its derivatives are the main therapeutic drugs against Plasmodium protists, the causative agents of malaria. While several putative mechanisms of action have been proposed, the precise molecular targets of these compounds have not been fully elucidated. In addition to their antimalarial properties, artemisinins have been reported to act as anti-tumour agents and certain antinociceptive effects have also been proposed. We investigated the effect of the parent compound, artemisinin, on a number of temperature-gated Transient Receptor Potential ion channels (so called thermoTRPs), given their demonstrated roles in pain-sensing and cancer. We report that artemisinin acts as an agonist of the Transient Receptor Potential Ankyrin type 1 (TRPA1) receptor channel. Artemisinin was able to evoke calcium transients in HEK293T cells expressing recombinant human TRPA1, as well as in a subpopulation of mouse dorsal root ganglion (DRG) neurons which also responded to the selective TRPA1 agonist allyl isothiocyanate (AITC) and these responses were reversibly abolished by the selective TRPA1 antagonist A967079. Artemisinin also triggered whole-cell currents in HEK293T cells transiently transfected with human TRPA1, as well as in TRPA1-expressing DRG neurons, and these currents were inhibited by A967079. Interestingly, using human TRPA1 mutants, we demonstrate that artemisinin acts as a non-electrophilic agonist of TRPA1, activating the channel in a similar manner to carvacrol and menthol. These results may provide a better understanding of the biological actions of the very important antimalarial and anti-tumour agent artemisinin.


Assuntos
Antimaláricos , Artemisininas , Canais de Potencial de Receptor Transitório , Animais , Humanos , Camundongos , Anquirinas/química , Anquirinas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Gânglios Espinais , Células HEK293 , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/química , Canal de Cátion TRPA1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...