Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4889, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849369

RESUMO

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Pulmonary exacerbations (PEx) in these conditions are associated with accelerated lung function decline and higher mortality rates. Understanding PEx ecology is challenged by high inter-patient variability in airway microbial community profiles. We analyze bacterial communities in 880 CF sputum samples collected during an observational prospective cohort study and develop microbiome descriptors to model community reorganization prior to and during 18 PEx. We identify two microbial dysbiosis regimes with opposing ecology and dynamics. Pathogen-governed PEx show hierarchical community reorganization and reduced diversity, whereas anaerobic bloom PEx display stochasticity and increased diversity. A simulation of antimicrobial treatment predicts better efficacy for hierarchically organized communities. This link between PEx, microbiome organization, and treatment success advances the development of personalized clinical management in CF and, potentially, other obstructive lung diseases.


Assuntos
Fibrose Cística , Disbiose , Microbiota , Escarro , Fibrose Cística/microbiologia , Humanos , Masculino , Escarro/microbiologia , Estudos Prospectivos , Feminino , Resultado do Tratamento , Disbiose/microbiologia , Adulto , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pulmão/microbiologia , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto Jovem , Adolescente , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
2.
Res Sq ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562856

RESUMO

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Pulmonary exacerbations (PEx) in these conditions are associated with accelerated lung function decline and higher mortality rates. An understanding of the microbial underpinnings of PEx is challenged by high inter-patient variability in airway microbial community profiles. We analyzed bacterial communities in 880 CF sputum samples and developed microbiome descriptors to model community reorganization prior to and during 18 PEx. We identified two microbial dysbiosis regimes with opposing ecology and dynamics. Pathogen-governed PEx showed hierarchical community reorganization and reduced diversity, whereas anaerobic bloom PEx displayed stochasticity and increased diversity. A simulation of antimicrobial treatment predicted better efficacy for hierarchically organized communities. This link between PEx type, microbiome organization, and treatment success advances the development of personalized clinical management in CF and, potentially, other obstructive lung diseases.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38261629

RESUMO

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

4.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546739

RESUMO

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease (COPD). Intermittent pulmonary exacerbations (PEx) in these conditions are associated with lung function decline and higher mortality rates. An understanding of the microbial underpinnings of PEx is challenged by high inter-patient variability in airway microbial community profiles. We analyzed 880 near-daily CF sputum samples and developed non-standard microbiome descriptors to model community reorganization prior and during 18 PEx. We identified two communal microbial regimes with opposing ecology and dynamics. Whereas pathogen-governed dysbiosis showed hierarchical community organization and reduced diversity, anaerobic bloom dysbiosis displayed stochasticity and increased diversity. Microbiome organization modulated the relevance of pathogens and a simulation of antimicrobial treatment predicted better efficacy for hierarchically organized microbiota. This causal link between PEx, microbiome organization, and treatment success advances the development of personalized dysbiosis management in CF and, potentially, other obstructive lung diseases.

5.
J Cyst Fibros ; 22(4): 623-629, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36628831

RESUMO

BACKGROUND: The progression of lung disease in people with cystic fibrosis (pwCF) has been associated with a decrease in the diversity of airway bacterial communities. How often low diversity communities occur in advanced CF lung disease and how they may be associated with clinical outcomes is not clear, however. METHODS: We sequenced a region of the bacterial 16S ribosomal RNA gene to characterize bacterial communities in sputum from 190 pwCF with advanced lung disease (FEV1≤40% predicted), with particular attention to the prevalence and relative abundance of dominant genera. We evaluated relationships between community diversity and clinical outcomes. RESULTS: Although most of the 190 pwCF with advanced lung disease had airway bacterial communities characterized by low diversity with a dominant genus, a considerable minority (40%) did not. The absence of a dominant genus, presence of methicillin-susceptible Staphylococcus aureus, and greater bacterial richness positively correlated with lung function. Higher relative abundance of the dominant genus and greater antimicrobial use negatively correlated with lung function. PwCF with a low diversity community and dominant genus had reduced lung transplant-free survival compared to those without (median survival of 1.6 vs 2.9 years). CONCLUSIONS: A considerable proportion of pwCF with advanced lung disease do not have airway bacterial communities characterized by low diversity and a dominant genus and these individuals had better survival. An understanding of the antecedents of low diversity airway communities- and the impact these may have on lung disease trajectory - may provide avenues for improved management strategies.


Assuntos
Fibrose Cística , Transplante de Pulmão , Microbiota , Humanos , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Fibrose Cística/microbiologia , Pulmão , Escarro/microbiologia , Bactérias/genética , RNA Ribossômico 16S/genética
6.
J Allergy Clin Immunol ; 151(4): 931-942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572355

RESUMO

BACKGROUND: Asthma and obesity are both complex conditions characterized by chronic inflammation, and obesity-related severe asthma has been associated with differences in the microbiome. However, whether the airway microbiome and microbiota-immune response relationships differ between obese persons with or without nonsevere asthma is unestablished. OBJECTIVE: We compared the airway microbiome and microbiota-immune mediator relationships between obese and nonobese subjects, with and without mild-moderate asthma. METHODS: We performed cross-sectional analyses of the airway (induced sputum) microbiome and cytokine profiles from blood and sputum using 16S ribosomal RNA gene and internal transcribed spacer region sequencing to profile bacteria and fungi, and multiplex immunoassays. Analysis tools included QIIME 2, linear discriminant analysis effect size (aka LEfSe), Piphillin, and Sparse inverse covariance estimation for ecological association inference (aka SPIEC-EASI). RESULTS: Obesity, irrespective of asthma status, was associated with significant differences in sputum bacterial community structure and composition (unweighted UniFrac permutational analysis of variance, P = .02), including a higher relative abundance of Prevotella, Gemella, and Streptococcus species. Among subjects with asthma, additional differences in sputum bacterial composition and fungal richness were identified between obese and nonobese individuals. Correlation network analyses demonstrated differences between obese and nonobese asthma in relationships between cytokine mediators, and these together with specific airway bacteria involving blood PAI-1, sputum IL-1ß, GM-CSF, IL-8, TNF-α, and several Prevotella species. CONCLUSION: Obesity itself is associated with an altered sputum microbiome, which further differs in those with mild-moderate asthma. The distinct differences in airway microbiota and immune marker relationships in obese asthma suggest potential involvement of airway microbes that may affect mechanisms or outcomes of obese asthma.


Assuntos
Asma , Microbiota , Humanos , Estudos Transversais , Sistema Respiratório/microbiologia , Microbiota/genética , Bactérias , Escarro
7.
mSphere ; 7(6): e0037722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36342141

RESUMO

Inhaled corticosteroids (ICS) are commonly prescribed first-line treatments for asthma and chronic obstructive pulmonary disease (COPD). Recent evidence has shown that ICS use is associated with changes in the airway microbiome, which may impact clinical outcomes such as potential increased risk for pneumonia in COPD. Although the immunomodulatory effects of corticosteroids are well appreciated, whether ICS could directly influence the behavior of respiratory tract bacteria has been unknown. In this pilot study we explored the effects of fluticasone proprionate, a commonly prescribed inhaled corticosteroid, on respiratory bacteria with an expanded focus on Klebsiella pneumoniae, a species previously implicated in fluticasone-associated pneumonia in COPD. We observed significant effects of fluticasone proprionate on growth responses of K. pneumoniae, as well as other bacterial species isolated from asthmatic patients. Fluticasone-exposed K. pneumoniae displayed altered expression of several bacterial genes and reduced the metabolic activity of bronchial epithelial cells and their expression of human ß-defensin 2. Targeted assays identified a fluticasone metabolite from fluticasone-exposed K. pneumoniae cells, suggesting this species may be capable of metabolizing fluticasone proprionate. Collectively, these observations support the hypothesis that specific members of the airway microbiota possess the functional repertoire to respond to or potentially utilize corticosteroids in their microenvironment. These findings lay a foundation for novel research directions into the potential direct effects of ICS, often prescribed long term to patients, on the broader airway microbial community and on the behavior of specific microbial species implicated in asthma and COPD outcomes. IMPORTANCE Inhaled corticosteroids are widely prescribed for many respiratory diseases, including asthma and COPD. While they benefit many patients, corticosteroids can also have negative effects. Some patients do not improve with treatment and even experience adverse side effects. Recent studies have shown that inhaled corticosteroids can change the make-up of bacteria in the human respiratory tract. However, whether these medications can directly impact the behavior of such bacteria has been unknown. Here, we explored the effects of fluticasone propionate, a commonly prescribed inhaled corticosteroid, on Klebsiella pneumoniae and other airway bacteria of interest, including primary species isolated from adult asthma patients. We provide evidence of growth responses to direct fluticasone exposure in culture and further examined fluticasone's effects on K. pneumoniae, including gene expression changes and effects of fluticasone-exposed bacteria on airway cells. These findings indicate that members of the human airway bacterial community possess the functional ability to respond to corticosteroids, which may have implications for the heterogeneity of treatment response observed clinically.


Assuntos
Asma , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Fluticasona/efeitos adversos , Klebsiella pneumoniae , Projetos Piloto , Asma/tratamento farmacológico , Asma/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/microbiologia , Corticosteroides/efeitos adversos
8.
J Cyst Fibros ; 21(5): 766-768, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667975

RESUMO

Chronic polymicrobial airway infections are a hallmark of cystic fibrosis (CF) lung disease. Antibiotic therapy is a primary treatment of CF pulmonary exacerbations (PEx); however, the impact of episodic antibiotic treatment on airway bacterial communities has not been well described. We analyzed sputum samples from adults with CF obtained immediately before and during antibiotic treatment of PEx. Sequencing of the V4 region of the bacterial 16S ribosomal RNA gene was used to assess changes in bacterial community structure during antibiotic treatment. The peak impact of antibiotic treatment was observed by day four or five of treatment. These findings advance our understanding of bacterial community dynamics during antibiotic treatment of PEx and complement recent and ongoing studies evaluating the optimal duration of antibiotic therapy for PEx.


Assuntos
Fibrose Cística , Adulto , Antibacterianos/uso terapêutico , Bactérias , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos , Pulmão , RNA Ribossômico 16S , Escarro/microbiologia
9.
Am J Respir Crit Care Med ; 206(4): 427-439, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35536732

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is variable in its development. Lung microbiota and metabolites collectively may impact COPD pathophysiology, but relationships to clinical outcomes in milder disease are unclear. Objectives: Identify components of the lung microbiome and metabolome collectively associated with clinical markers in milder stage COPD. Methods: We analyzed paired microbiome and metabolomic data previously characterized from bronchoalveolar lavage fluid in 137 participants in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), or (GOLD [Global Initiative for Chronic Obstructive Lung Disease Stage 0-2). Datasets used included 1) bacterial 16S rRNA gene sequencing; 2) untargeted metabolomics of the hydrophobic fraction, largely comprising lipids; and 3) targeted metabolomics for a panel of hydrophilic compounds previously implicated in mucoinflammation. We applied an integrative approach to select features and model 14 individual clinical variables representative of known associations with COPD trajectory (lung function, symptoms, and exacerbations). Measurements and Main Results: The majority of clinical measures associated with the lung microbiome and metabolome collectively in overall models (classification accuracies, >50%, P < 0.05 vs. chance). Lower lung function, COPD diagnosis, and greater symptoms associated positively with Streptococcus, Neisseria, and Veillonella, together with compounds from several classes (glycosphingolipids, glycerophospholipids, polyamines and xanthine, an adenosine metabolite). In contrast, several Prevotella members, together with adenosine, 5'-methylthioadenosine, sialic acid, tyrosine, and glutathione, associated with better lung function, absence of COPD, or less symptoms. Significant correlations were observed between specific metabolites and bacteria (Padj < 0.05). Conclusions: Components of the lung microbiome and metabolome in combination relate to outcome measures in milder COPD, highlighting their potential collaborative roles in disease pathogenesis.


Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Adenosina , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , RNA Ribossômico 16S/genética
10.
mSphere ; 7(3): e0010422, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35477313

RESUMO

Nontuberculous mycobacterial (NTM) pulmonary infections in people with cystic fibrosis (CF) are associated with significant morbidity and mortality and are increasing in prevalence. Host risk factors for NTM infection in CF are largely unknown. We hypothesize that the airway microbiota represents a host risk factor for NTM infection. In this study, 69 sputum samples were collected from 59 people with CF; 42 samples from 32 subjects with NTM infection (14 samples collected before incident NTM infection and 28 samples collected following incident NTM infection) were compared to 27 samples from 27 subjects without NTM infection. Sputum samples were analyzed with 16S rRNA gene sequencing and metabolomics. A supervised classification and correlation analysis framework (sparse partial least-squares discriminant analysis [sPLS-DA]) was used to identify correlations between the microbial and metabolomic profiles of the NTM cases compared to the NTM-negative controls. Several metabolites significantly differed in the NTM cases compared to controls, including decreased levels of tryptophan-associated and branched-chain amino acid metabolites, while compounds involved in phospholipid metabolism displayed increased levels. When the metabolome and microbiome data were integrated by sPLS-DA, the models and component ordinations showed separation between the NTM and control samples. While this study could not determine if the observed differences in sputum metabolites between the cohorts reflect metabolic changes that occurred as a result of the NTM infection or metabolic features that contributed to NTM acquisition, it is hypothesis generating for future work to investigate host and bacterial community factors that may contribute to NTM infection risk in CF. IMPORTANCE Host risk factors for nontuberculous mycobacterial (NTM) infection in people with cystic fibrosis (CF) are largely unclear. The goal of this study was to help identify potential host and bacterial community risk factors for NTM infection in people with CF, using microbiome and metabolome data from CF sputum samples. The data obtained in this study identified several metabolic profile differences in sputum associated with NTM infection in CF, including 2-methylcitrate/homocitrate and selected ceramides. These findings represent potential risk factors and therapeutic targets for preventing and/or treating NTM infections in people with CF.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Infecções Oportunistas , Bactérias , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Micobactérias não Tuberculosas , RNA Ribossômico 16S/genética , Escarro/microbiologia
11.
ERJ Open Res ; 7(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898611

RESUMO

RATIONALE: Pulmonary infections with nontuberculous mycobacteria (NTM) are increasingly prevalent in people with cystic fibrosis (CF). Clinical outcomes following NTM acquisition are highly variable, ranging from transient self-resolving infection to NTM pulmonary disease associated with significant morbidity. Relationships between airway microbiota and variability of NTM outcomes in CF are unclear. OBJECTIVE: To identify features of CF airway microbiota associated with outcomes of NTM infection. METHODS: 188 sputum samples, obtained from 24 subjects with CF, each with three or more samples collected from 3.5 years prior to, and up to 6 months following incident NTM infection, were selected from a sample repository. Sputum DNA underwent bacterial 16S rRNA gene sequencing. Airway microbiota were compared based on the primary outcome, a diagnosis of NTM pulmonary disease, using Wilcoxon rank-sum testing, autoregressive integrated moving average modelling and network analyses. MEASUREMENTS AND MAIN RESULTS: Subjects with and without NTM pulmonary disease were similar in clinical characteristics, including age and lung function at the time of incident NTM infection. Time-series analyses of sputum samples prior to incident NTM infection identified positive correlations between Pseudomonas, Streptococcus, Veillonella, Prevotella and Rothia with diagnosis of NTM pulmonary disease and with persistent NTM infection. Network analyses identified differences in clustering of taxa between subjects with and without NTM pulmonary disease, and between subjects with persistent versus transient NTM infection. CONCLUSIONS: CF airway microbiota prior to incident NTM infection are associated with subsequent outcomes, including diagnosis of NTM pulmonary disease, and persistence of NTM infection. Associations between airway microbiota and NTM outcomes represent targets for validation as predictive markers and for future therapies.

12.
NPJ Biofilms Microbiomes ; 7(1): 14, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547327

RESUMO

Chronic obstructive pulmonary disease (COPD) is heterogeneous in development, progression, and phenotypes. Little is known about the lung microbiome, sampled by bronchoscopy, in milder COPD and its relationships to clinical features that reflect disease heterogeneity (lung function, symptom burden, and functional impairment). Using bronchoalveolar lavage fluid collected from 181 never-smokers and ever-smokers with or without COPD (GOLD 0-2) enrolled in the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS), we find that lung bacterial composition associates with several clinical features, in particular bronchodilator responsiveness, peak expiratory flow rate, and forced expiratory flow rate between 25 and 75% of FVC (FEF25-75). Measures of symptom burden (COPD Assessment Test) and functional impairment (six-minute walk distance) also associate with disparate lung microbiota composition. Drivers of these relationships include members of the Streptococcus, Prevotella, Veillonella, Staphylococcus, and Pseudomonas genera. Thus, lung microbiota differences may contribute to airway dysfunction and airway disease in milder COPD.


Assuntos
Bactérias/classificação , Pulmão/microbiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Adulto , Idoso , Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/microbiologia , Espirometria
13.
mSystems ; 5(4)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636336

RESUMO

Culture-independent studies of the cystic fibrosis (CF) airway microbiome typically rely on expectorated sputum to assess the microbial makeup of lower airways. These studies have revealed rich bacterial communities. There is often considerable overlap between taxa observed in sputum and those observed in saliva, raising questions about the reliability of expectorated sputum as a sample representing lower airway microbiota. These concerns prompted us to compare pairs of sputum and saliva samples from 10 persons with CF. Using 16S rRNA gene sequencing and droplet digital PCR (ddPCR), we analyzed 37 pairs of sputum and saliva samples, each collected from the same person on the same day. We developed an in silico postsequencing decontamination procedure to remove from sputum the fraction of DNA reads estimated to have been contributed by saliva during expectoration. We demonstrate that while there was often sizeable overlap in community membership between sample types, expectorated sputum typically contains a higher bacterial load and a less diverse community compared to saliva. The differences in diversity between sputum and saliva were more pronounced in advanced disease stage, owing to increased relative abundance of the dominant taxa in sputum. Our effort to model saliva contamination of sputum in silico revealed generally minor effects on community structure after removal of contaminating reads. Despite considerable overlap in taxa observed between expectorated sputum and saliva samples, the impact of saliva contamination on measures of lower airway bacterial community composition in CF using expectorated sputum appears to be minimal.IMPORTANCE Cystic fibrosis is an inherited disease characterized by chronic respiratory tract infection and progressive lung disease. Studies of cystic fibrosis lung microbiology often rely on expectorated sputum to reflect the microbiota present in the lower airways. Passage of sputum through the oropharynx during collection, however, contributes microbes present in saliva to the sample, which could confound interpretation of results. Using culture-independent DNA sequencing-based analyses, we characterized the bacterial communities in pairs of expectorated sputum and saliva samples to generate a model for "decontaminating" sputum in silico Our results demonstrate that salivary contamination of expectorated sputum does not have a large effect on most sputum samples and that observations of high bacterial diversity likely accurately reflect taxa present in cystic fibrosis lower airways.

15.
Ann Am Thorac Soc ; 16(12): 1534-1542, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415187

RESUMO

Rationale: Differences in cystic fibrosis (CF) airway microbiota between periods of clinical stability and exacerbation of respiratory symptoms have been investigated in efforts to better understand microbial triggers of CF exacerbations. Prior studies have often relied on a single sample or a limited number of samples to represent airway microbiota. However, the variability in airway microbiota during periods of clinical stability is not well known.Objectives: To determine the temporal variability of measures of airway microbiota during periods of clinical stability, and to identify factors associated with this variability.Methods: Sputum samples (N = 527), obtained daily from six adults with CF during 10 periods of clinical stability, underwent sequencing of the V4 region of the bacterial 16S ribosomal RNA gene. The variability in airway microbiota among samples within each period of clinical stability was calculated as the average of the Bray-Curtis similarity measures of each sample to every other sample within the same period. Outlier samples were defined as samples outside 1.5 times the interquartile range within a baseline period with respect to the average Bray-Curtis similarity. Total bacterial load was measured with droplet digital polymerase chain reaction.Results: The variation in Bray-Curtis similarity and total bacterial load among samples within the same baseline period was greater than the variation observed in technical replicate control samples. Overall, 6% of samples were identified as outliers. Within baseline periods, changes in bacterial community structure occurred coincident with changes in maintenance antibiotics (P < 0.05, analysis of molecular variance). Within subjects, bacterial community structure changed between baseline periods (P < 0.01, analysis of molecular variance). Sample-to-sample similarity within baseline periods was greater with fewer interval days between sampling.Conclusions: During periods of clinical stability, airway bacterial community structure and bacterial load vary among daily sputum samples from adults with CF. This day-to-day variation has bearing on study design and interpretation of results, particularly in analyses that rely on single samples to represent periods of interest (e.g., clinical stability vs. pulmonary exacerbation). These data also emphasize the importance of accounting for maintenance antibiotic use and granularity of sample collection in studies designed to assess the dynamics of CF airway microbiota relative to changes in clinical state.


Assuntos
Bactérias/isolamento & purificação , Fibrose Cística/microbiologia , Microbiota/efeitos dos fármacos , Sistema Respiratório/microbiologia , Adulto , Antibacterianos/uso terapêutico , Carga Bacteriana , Fibrose Cística/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Sistema Respiratório/efeitos dos fármacos , Escarro/microbiologia
16.
Life (Basel) ; 9(2)2019 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060233

RESUMO

Pathways of standard genetic code evolution remain conserved and apparent, particularly upon analysis of aminoacyl-tRNA synthetase (aaRS) lineages. Despite having incompatible active site folds, class I and class II aaRS are homologs by sequence. Specifically, structural class IA aaRS enzymes derive from class IIA aaRS enzymes by in-frame extension of the protein N-terminus and by an alternate fold nucleated by the N-terminal extension. The divergence of aaRS enzymes in the class I and class II clades was analyzed using the Phyre2 protein fold recognition server. The class I aaRS radiated from the class IA enzymes, and the class II aaRS radiated from the class IIA enzymes. The radiations of aaRS enzymes bolster the coevolution theory for evolution of the amino acids, tRNAomes, the genetic code, and aaRS enzymes and support a tRNA anticodon-centric perspective. We posit that second- and third-position tRNA anticodon sequence preference (C>(U~G)>A) powerfully selected the sectoring pathway for the code. GlyRS-IIA appears to have been the primordial aaRS from which all aaRS enzymes evolved, and glycine appears to have been the primordial amino acid around which the genetic code evolved.

17.
Int J Mol Sci ; 20(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583477

RESUMO

Ribosomes are among the largest and most dynamic molecular motors. The structure and dynamics of translation initiation and elongation are reviewed. Three ribosome motions have been identified for initiation and translocation. A swivel motion between the head/beak and the body of the 30S subunit was observed. A tilting dynamic of the head/beak versus the body of the 30S subunit was detected using simulations. A reversible ratcheting motion was seen between the 30S and the 50S subunits that slide relative to one another. The 30S⁻50S intersubunit contacts regulate translocation. IF2, EF-Tu, and EF-G are homologous G-protein GTPases that cycle on and off the same site on the ribosome. The ribosome, aminoacyl-tRNA synthetase (aaRS) enzymes, transfer ribonucleic acid (tRNA), and messenger ribonucleic acid (mRNA) form the core of information processing in cells and are coevolved. Surprisingly, class I and class II aaRS enzymes, with distinct and incompatible folds, are homologs. Divergence of class I and class II aaRS enzymes and coevolution of the genetic code are described by analysis of ancient archaeal species.


Assuntos
Evolução Molecular , Ribossomos/química , Ribossomos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elongação Traducional da Cadeia Peptídica/fisiologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Thermus thermophilus/fisiologia
18.
Int J Mol Sci ; 19(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360357

RESUMO

Because tRNA is the core biological intellectual property that was necessary to evolve translation systems, tRNAomes, ribosomes, aminoacyl-tRNA synthetases, and the genetic code, the evolution of tRNA is the core story in evolution of life on earth. We have previously described the evolution of type-I tRNAs. Here, we use the same model to describe the evolution of type-II tRNAs, with expanded V loops. The models are strongly supported by inspection of typical tRNA diagrams, measuring lengths of V loop expansions, and analyzing the homology of V loop sequences to tRNA acceptor stems. Models for tRNA evolution provide a pathway for the inanimate-to-animate transition and for the evolution of translation systems, the genetic code, and cellular life.


Assuntos
RNA de Transferência/química , RNA de Transferência/genética , Evolução Molecular , Código Genético/genética , Conformação de Ácido Nucleico
19.
BMJ Open Respir Res ; 5(1): e000324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271607

RESUMO

INTRODUCTION: Despite strong evidence that maturation patterns of the gut microbiome in early life influence the risk for childhood asthma, very little is known about gut microbiota patterns in adults with established asthma, and of greater interest relationships to phenotypic features that characterise asthma heterogeneity. METHODS: Fifty-eight faecal samples from 32 adults with (n=24) and without (n=8) asthma were analysed using 16S ribosomal RNA gene sequencing methods to characterise intestinal bacterial composition. Compositional stability of paired samples was evaluated and features of gut bacterial community structure analysed in relation to extensive clinical characterisation data collected from subjects, who were enrolled in a prospective observational cohort study at the University of Michigan. RESULTS: Differences in gut bacterial community structure were associated with aeroallergen sensitisation and lung function as assessed by forced expiratory volume in 1 s (FEV1) %predicted. Associations with FEV1 were consistently observed across independent analytic approaches. k-means clustering of the gut microbiota data in subjects with asthma revealed three different clusters, distinguished most strongly by FEV1 (p<0.05) and trends in differences in other clinical and inflammatory features. CONCLUSION: In this pilot study of asthmatic and non-asthmatic subjects, significant relationships between gut microbiota composition, aeroallergen sensitisation and lung function were observed. These preliminary findings merit further study in larger cohorts to explore possible mechanistic links to asthma phenotype.

20.
Transcription ; 9(1): 1-16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28853995

RESUMO

Based on molecular dynamics simulations and functional studies, a conformational mechanism is posited for forward translocation by RNA polymerase (RNAP). In a simulation of a ternary elongation complex, the clamp and downstream cleft were observed to close. Hinges within the bridge helix and trigger loop supported generation of translocation force against the RNA-DNA hybrid resulting in opening of the furthest upstream i-8 RNA-DNA bp, establishing conditions for RNAP sliding. The ß flap tip helix and the most N-terminal ß' Zn finger engage the RNA, indicating a path of RNA threading out of the exit channel. Because the ß flap tip connects to the RNAP active site through the ß subunit double-Ψ-ß-barrel and the associated sandwich barrel hybrid motif (also called the flap domain), the RNAP active site is coupled to the RNA exit channel and to the translocation of RNA-DNA. Using an exonuclease III assay to monitor translocation of RNAP elongation complexes, we show that K+ and Mg2+ and also an RNA 3'-OH or a 3'-H2 affect RNAP sliding. Because RNAP grip to template suggests a sticky translocation mechanism, and because grip is enhanced by increasing K+ and Mg2+concentration, biochemical assays are consistent with a conformational change that drives forward translocation as observed in simulations. Mutational analysis of the bridge helix indicates that 778-GARKGL-783 (Escherichia coli numbering) is a homeostatic hinge that undergoes multiple bends to compensate for complex conformational dynamics during phosphodiester bond formation and translocation.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Translocação Genética , Humanos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...