Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(45): 8911-8918, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37961836

RESUMO

Once granular materials flow, particles charge because of the triboelectric effect. When particles touch each other, charges are exchanged during contact whether they are made of the same material or not. Surprisingly, when different sizes of particles are mixed together, large particles tend to charge positively while small particles charge negatively. If the particles are relatively small (typically smaller than a millimeter), the electrostatic interaction between the particles becomes significant and leads to aggregation or sticking on the surface of the container holding them. Studying those effects is challenging as the mechanisms that govern the triboelectric effect are not fully understood yet. We show that the patch model (or mosaic model) is suitable to reproduce numerically the flow of triboelectrically charged granular materials as the specific charging of bi-disperse granular materials can be retrieved. We investigate the influence of charging on the cohesion of granular materials and highlight the relevant parameters related to the patch model that influence cohesion. Our results shed new light on the mechanisms of the triboelectric effect as well as on how the charging of granular materials influences cohesion using numerical simulations.

2.
Sci Rep ; 11(1): 10621, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012072

RESUMO

Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadow-based and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions.

3.
Phys Rev E ; 104(6-1): 064901, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030871

RESUMO

The flow of cohesive granular materials in a two-dimensional rotating drum is investigated using discrete element method simulations. Contacts between particles are modeled based on the widely used model of the spring-dashpot and Coulomb's friction law. A simplified model of intermediate range attraction between grains (i.e., cohesion) has been used in order to reproduce the flow of electrostatic or wet granular materials. Granular flow is generated by means of a rotating drum and the effect of the rotation speed, the friction between the grains, and the cohesion are studied. Significantly different flow behaviors are observed when cohesion is added. Plug flow appears in the rotating drum for a wide range of rotation speeds when cohesion becomes sufficiently strong. We propose a measurement of surface flow fluctuations to quantify the strength of cohesion, inspired by the previous observation of plug flow. Then, we make use of the results to include the effect of cohesion into a theoretical flow model. A good agreement is obtained between theory and numerical measurements of the granular bed's dynamic angle of repose, which allows us to propose a method for estimating the microscopic cohesion between grains based on the measurement of surface fluctuations.

4.
Phys Rev E ; 102(4-1): 042907, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212698

RESUMO

We perform three-dimensional particle-based simulations of confined, vibrated, and magnetizable beads to study the effect of cell geometry on pattern selection. For quasi-two-dimensional systems, we reproduce previously observed macroscopic patterns such as hexagonal crystals and labyrinthine structures. For systems at the crossover from two to three dimensions, labyrinthine branches shorten and are replaced by triplets of beads forming upright triangles which self-organize into a herringbone pattern. This transition is associated with increases in both translational and orientational orders.

5.
Soft Matter ; 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914151

RESUMO

For reaching high packing fractions, grains of various sizes are often mixed together allowing the small grains to fill the voids created by the large ones. However, in most cases, granular segregation occurs leading to lower packing fractions. We performed a wide set of experiments with different binary granular systems, proving that two main parameters are respectively the volume fraction f of small beads and the grain size ratio α. In addition, we show how granular segregation affects the global packing fraction. We propose a model with a strong dependency on α that takes into account possible granular segregation. Our model is in good agreement with both earlier experimental and simulation data.

6.
Sci Rep ; 9(1): 7281, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086235

RESUMO

Binary granular mixtures are known to show various packing arrangements depending on both fractions and size ratios of their components. While the final packing fraction can be estimated by geometrical arguments, the dynamics of the pile submitted to gentle vibrations towards a dense state is seen to be highly size ratio dependent. We observe experimentally a diverging compaction characteristic time close to a critical size ratio, such that the grain mobility in the packing is the lowest close to the percolation threshold, when small particles can pass through the voids left by the large ones. Moreover, we evidence a fast compaction dynamics regime when the grain size ratio is large enough.

7.
NPJ Microgravity ; 3: 1, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649623

RESUMO

Space exploration and exploitation face a major challenge: the handling of granular materials in low-gravity environments. Indeed, grains behave quite differently in space than on Earth, and the dissipative nature of the collisions between solid particles leads to clustering. Within poly-disperse materials, the question of segregation is highly relevant but has not been addressed so far in microgravity. From parabolic flight experiments on dilute binary granular media, we show that clustering can trigger a segregation mechanism, and we observe, for the first time, the formation of layered structures in the bulk.

8.
Phys Rev E ; 95(2-1): 022905, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297928

RESUMO

We investigate numerically and theoretically the internal structures of a driven granular gas in cuboidal cell geometries. Clustering is reported and particles are classified as gaseous or clustered via a local packing fraction criterion based on a Voronoi tessellation. We observe that small clusters arise in the corners of the box, elucidating early reports of partial clustering. These aggregates have a condensation-like surface growth. When a critical size is reached, a structural transition occurs and all clusters merge together, leaving a hole in the center of the cell. This hole then becomes the new center of particle capture. Taking into account all structural modifications and defining a saturation packing fraction, we propose an empirical model for the cluster growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...