Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(50): e2205233, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36319473

RESUMO

Anode-less lithium metal batteries (ALMBs), whether employing liquid or solid electrolytes, have significant advantages such as lowered costs and increased energy density over lithium metal batteries (LMBs). Among many issues, dendrite growth and non-uniform plating which results in poor coulombic efficiency are the key issues that viciously decrease the longevity of the ALMBs. As a result, lowering the nucleation barrier and facilitating lithium growth towards uniform plating is even more critical in ALMBs. While extensive reviews have focused to describe strategies to achieve high performance in LMBs and ALMBs, this review focuses on strategies designed to directly facilitate nucleation and growth of dendrite-free ALMBs. The review begins with a discussion of the primary components of ALMBs, followed by a brief theoretical analysis of the nucleation and growth mechanism for ALMBs. The review then emphasizes key examples for each strategy in order to highlight the mechanisms and rationale that facilitate lithium plating. By comparing the structure and mechanisms of key materials, the review discusses their benefits and drawbacks. Finally, major trends and key findings are summarized, as well as an outlook on the scientific and economic gaps in ALMBs.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Metais
2.
Adv Mater ; 34(49): e2207344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36177699

RESUMO

Aqueous Zn-ion batteries are well regarded among a next-generation energy-storage technology due to their low cost and high safety. However, the unstable stripping/plating process leading to severe dendrite growth under high current density and low temperature impede their practical application. Herein, it is demonstrated that the addition of 2-propanol can regulate the outer solvation shell structure of Zn2+ by replacing water molecules to establish a "eutectic solvation shell", which provides strong affinity with the Zn (101) crystalline plane and fast desolvation kinetics during the plating process, rendering homogeneous Zn deposition without dendrite formation. As a result, the Zn anode exhibits promising cycle stability over 500 h under an elevated current density of 15 mA cm-2 and high depth of discharge of 51.2%. Furthermore, remarkable electrochemical performance is achieved in a 150 mAh Zn|V2 O5 pouch cell over 1000 cycles at low temperature of -20 °C. This work not only offers a new strategy to achieve excellent performance of aqueous Zn-ion batteries under harsh conditions, but also reveals electrolyte structure designs that can be applied in related energy storage and conversion fields.

3.
Adv Mater ; 34(16): e2108079, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34963198

RESUMO

Although one of the most mature battery technologies, lithium-ion batteries still have many aspects that have not reached the desired requirements, such as energy density, current density, safety, environmental compatibility, and price. To solve these problems, all-solid-state lithium batteries (ASSLB) based on lithium metal anodes with high energy density and safety have been proposed and become a research hotpot in recent years. Due to the advanced electrochemical properties of 2D materials (2DM), they have been applied to mitigate some of the current problems of ASSLBs, such as high interface impedance and low electrolyte ionic conductivity. In this work, the background and fabrication method of 2DMs are reviewed initially. The improvement strategies of 2DMs are categorized based on their application in the three main components of ASSLBs: The anode, cathode, and electrolyte. Finally, to elucidate the mechanisms of 2DMs in ASSLBs, the role of in situ characterization, synchrotron X-ray techniques, and other advanced characterization are discussed.

4.
Adv Sci (Weinh) ; 7(22): 2002213, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240769

RESUMO

Capacitive deionization (CDI) is an emerging desalination technology for effective removal of ionic species from aqueous solutions. Compared to conventional CDI, which is based on carbon electrodes and struggles with high salinity streams due to a limited salt removal capacity by ion electrosorption and excessive co-ion expulsion, the emerging Faradaic electrodes provide unique opportunities to upgrade the CDI performance, i.e., achieving much higher salt removal capacities and energy-efficient desalination for high salinity streams, due to the Faradaic reaction for ion capture. This article presents a comprehensive overview on the current developments of Faradaic electrode materials for CDI. Here, the fundamentals of Faradaic electrode-based CDI are first introduced in detail, including novel CDI cell architectures, key CDI performance metrics, ion capture mechanisms, and the design principles of Faradaic electrode materials. Three main categories of Faradaic electrode materials are summarized and discussed regarding their crystal structure, physicochemical characteristics, and desalination performance. In particular, the ion capture mechanisms in Faradaic electrode materials are highlighted to obtain a better understanding of the CDI process. Moreover, novel tailored applications, including selective ion removal and contaminant removal, are specifically introduced. Finally, the remaining challenges and research directions are also outlined to provide guidelines for future research.

5.
iScience ; 23(9): 101505, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32947125

RESUMO

The exponential growth in demand for electric vehicles (EVs) necessitates increasing supplies of low-cost and high-performance lithium-ion batteries (LIBs). Naturally, the ramp-up in LIB production raises concerns over raw material availability, where constraints can generate severe price spikes and bring the momentum and optimism of the EV market to a halt. Particularly, the reliance of cobalt in the cathode is concerning owing to its high cost, scarcity, and centralized and volatile supply chain structure. However, compositions suitable for EV applications that demonstrate high energy density and lifetime are all reliant on cobalt to some degree. In this work, we assess the necessity and feasibility of developing and commercializing cobalt-free cathode materials for LIBs. Promising cobalt-free compositions and critical areas of research are highlighted, which provide new insight into the role and contribution of cobalt.

6.
ACS Appl Energy Mater ; 2(8): 5635-5642, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31559393

RESUMO

The fabrication, thickness, and structure of aerogel films composed of covalently cross-linked cellulose nanocrystals (CNCs) and poly(oligoethylene glycol methacrylate) (POEGMA) were optimized for use as electrolyte absorbers in dye-sensitized solar cells (DSSCs). The aerogel films were cast directly on transparent conducting counter electrode substrates (glass and flexible poly(ethylene terephthalate) plastic) and then used to absorb drop-cast liquid electrolyte, thus providing an alternative method of filling electrolyte in DSSCs. This approach eliminates the use of electrolyte-filling holes, which are a typical pathway of electrolyte leakage, and furthermore enables a homogeneous distribution of electrolyte components within the photoelectrode. Unlike typical in situ electrolyte gelation approaches, the phase inversion method used here results in a highly porous (>99%) electrolyte scaffold with excellent ionic conductivity and interfacial properties. DSSCs prepared with CNC-POEGMA aerogels reached similar power conversion efficiencies as compared to liquid electrolyte devices, indicating that the aerogel does not interfere with the operation of the device. These aerogels retain their structural integrity upon bending, which is critical for their application in flexible devices. Furthermore, the aerogels demonstrate impressive chemical and mechanical stability in typical electrolyte solvents because of their stable covalent cross-linking. Overall, this work demonstrates that the DSSC fabrication process can be simplified and made more easily upscalable by taking advantage of CNCs, being an abundant and sustainable bio-based material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...