Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38090855

RESUMO

When microbubble contrast agents are excited at low frequencies (less than 5 MHz), they resonate and produce higher-order harmonics due to their nonlinear behavior. We propose a novel scheme with a capacitive micromachined ultrasonic transducer (CMUT) array to receive high-frequency microbubble harmonics in collapse mode and to transmit a low-frequency high-pressure pulse by releasing the CMUT plate from collapse and pull it back to collapse again in the same transmit-receive cycle. By patterning and etching the substrate to create glass spacers in the device cavity we can reliably operate the CMUT in collapse mode and receive high-frequency signals. Previously, we demonstrated a single-element CMUT with spacers operating in the described fashion. In this article, we present the design and fabrication of a dual-mode, dual-frequency 1-D CMUT array with 256 elements. We present two different insulating glass spacer designs in rectangular cells for the collapse mode. For the device with torus-shaped spacers, the 3 dB receive bandwidth is from 8 to 17 MHz, and the transmitted maximum peak-to-peak pressure from 32 elements at 4 mm focal depth was 2.12 MPa with a 1.21 MPa peak negative pressure, which corresponds to a mechanical index (MI) of 0.58 at 4.3 MHz. For the device with line-shaped spacers, the 3-dB receive bandwidth at 150 V dc bias extends from 10.9 to 19.2 MHz. By increasing the bias voltage to 180 V, the 3 dB bandwidth shifts, and extends from 11.7 to 20.4 MHz. The transmitting maximum peak-to-peak pressure with 32 elements at 4 mm was 2.06 MPa with a peak negative pressure of 1.19 MPa, which corresponds to an MI of 0.62 at 3.7 MHz.

2.
J Neurosci Methods ; 402: 110009, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37952832

RESUMO

BACKGROUND: There are pushes toward non-invasive stimulation of neural tissues to prevent issues that arise from invasive brain recordings and stimulation. Transcranial Focused Ultrasound (TFUS) has been examined as a way to stimulate non-invasively, but previous studies have limitations in the application of TFUS. As a result, refinement is needed to improve stimulation results. NEW METHOD: We utilized a custom-built capacitive micromachined ultrasonic transducer (CMUT) that would send ultrasonic waves through skin and skull to targets located in the Frontal Eye Fields (FEF) region triangulated from co-registered MRI and CT scans while a non-human primate subject was performing a discrimination behavioral task. RESULTS: We observed that the stimulation immediately caused changes in the local field potential (LFP) signal that continued until stimulation ended, at which point there was higher voltage upon the cue for the animal to saccade. This co-incided with increases in activity in the alpha band during stimulation. The activity rebounded mid-way through our electrode-shank, indicating a specific point of stimulation along the shank. We observed different LFP signals for different stimulation targets, indicating the ability to"steer" the stimulation through the transducer. We also observed a bias in first saccades towards the opposite direction. CONCLUSIONS: In conclusion, we provide a new approach for non-invasive stimulation during performance of a behavioral task. With the ability to steer stimulation patterns and target using a large amount of transducers, the ability to provide non-invasive stimulation will be greatly improved for future clinical and research applications.


Assuntos
Lobo Frontal , Ultrassom , Animais , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Encéfalo , Movimentos Sacádicos , Primatas , Transdutores
3.
Bioengineering (Basel) ; 10(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760164

RESUMO

Photoacoustic (PA) imaging can be used to monitor high-intensity focused ultrasound (HIFU) therapies because ablation changes the optical absorption spectrum of the tissue, and this change can be detected with PA imaging. Multi-wavelength photoacoustic (MWPA) imaging makes this change easier to detect by repeating PA imaging at multiple optical wavelengths and sampling the optical absorption spectrum more thoroughly. Real-time pixel-wise classification in MWPA imaging can assist clinicians in monitoring HIFU lesion formation and will be a crucial milestone towards full HIFU therapy automation based on artificial intelligence. In this paper, we present a deep-learning-based approach to segment HIFU lesions in MWPA images. Ex vivo bovine tissue is ablated with HIFU and imaged via MWPA imaging. The acquired MWPA images are then used to train and test a convolutional neural network (CNN) for lesion segmentation. Traditional machine learning algorithms are also trained and tested to compare with the CNN, and the results show that the performance of the CNN significantly exceeds traditional machine learning algorithms. Feature selection is conducted to reduce the number of wavelengths to facilitate real-time implementation while retaining good segmentation performance. This study demonstrates the feasibility and high performance of the deep-learning-based lesion segmentation method in MWPA imaging to monitor HIFU lesion formation and the potential to implement this method in real time.

4.
Biomed Opt Express ; 14(12): 6283-6290, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420324

RESUMO

This study investigates the feasibility of capturing visually evoked hemodynamic responses in the mouse brain using photoacoustic tomography (PAT) and ultrasound (US) dual-modality imaging. A commercial piezoelectric transducer array and a capacitive micromachined ultrasonic transducer (CMUT) array were compared using a programmable PAT-US imaging system. The system resolution was measured by imaging phantoms. We also tested the ability of the system to capture visually evoked hemodynamic responses in the superior colliculus as well as the primary visual cortex in wild-type mice. Results show that the piezoelectric transducer array and the CMUT array exhibit comparable imaging performance, and both arrays can capture visually evoked hemodynamic responses in subcortical as well as cortical regions of the mouse brain.

5.
IEEE Trans Biomed Circuits Syst ; 16(5): 842-851, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35671313

RESUMO

Ultrasonic wireless power transmission (WPT) using pre-charged capacitive micromachined ultrasonic transducers (CMUT) is drawing great attention due to the easy integration of CMUT with CMOS techniques. Here, we present an integrated circuit (IC) that interfaces with a pre-charged CMUT device for ultrasonic energy harvesting. We implemented an adaptive high voltage charge pump (HVCP) in the proposed IC, which features low power, overvoltage stress (OVS) robustness, and a wide output range. The ultrasonic energy harvesting IC is fabricated in the 180 nm HV BCD process and occupies a 2 × 2.5 mm2 silicon area. The adaptive HVCP offers a 2× - 12× voltage conversion ratio (VCR), thereby providing a wide bias voltage range of 4 V-44 V for the pre-charged CMUT. Moreover, a VCR tunning finite state machine (FSM) implemented in the proposed IC can dynamically adjust the VCR to stabilize the HVCP output (i.e., the pre-charged CMUT bias voltage) to a target voltage in a closed-loop manner. Such a closed-loop control mechanism improves the tolerance of the proposed IC to the received power variation caused by misalignments, amount of transmitted power change, and/or load variation. Besides, the proposed ultrasonic energy harvesting IC has an average power consumption of 35 µW-554 µW corresponding to the HVCP output from 4 V-44 V. The CMUT device with a local surface acoustic intensity of 3.78 mW/mm2, which is well below the FDA limit for power flux (7.2 mW/mm2), can deliver sufficient power to the IC.


Assuntos
Transdutores , Ultrassom , Ultrassonografia , Desenho de Equipamento , Capacitância Elétrica
6.
Artigo em Inglês | MEDLINE | ID: mdl-35522635

RESUMO

This article presents an imaging probe with a 256-element ultrawideband (UWB) 1-D capacitive micromachined ultrasonic transducer (CMUT) array designed for acoustic angiography (AA). This array was fabricated on a borosilicate glass wafer with a reduced bottom electrode and an additional central plate mass to achieve the broad bandwidth. A custom 256-channel handheld probe was designed and implemented with integrated low-noise amplifiers and supporting power circuitry. This probe was used to characterize the UWB CMUT, which has a functional 3-dB frequency band from 3.5 to 23.5 MHz. A mechanical index (MI) of 0.33 was achieved at 3.5 MHz at a depth of 11 mm. These promising measurements are then combined to demonstrate AA. The use of alternate amplitude modulation (aAM) combined with a frequency analysis of the measured transmit signal demonstrates the suitability of the UWB CMUT for AA. This is achieved by measuring only a low level of unwanted high-frequency harmonics in both the transmit signal and the reconstructed image in the areas other than the contrast bubbles.


Assuntos
Transdutores , Ultrassom , Angiografia , Desenho de Equipamento , Ultrassonografia/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-34460372

RESUMO

Even simple behaviors arise from the simultaneous activation of multiple regions in the brain. Thus, the ability to simultaneously stimulate multiple regions within a brain circuit should allow for better modulation of function. However, performing simultaneous multifocus ultrasound neuromodulation introduces challenges to transducer design. Using 3-D Fullwave simulations, we have designed an ultrasound neuromodulation array for nonhuman primates that: 1) can simultaneously focus on multiple targets and 2) include an imaging aperture for additional functional imaging. This design is based on a spherical array, with 128 15-mm elements distributed in a spherical helix pattern. It is shown that clustering the elements tightly around the 65-mm imaging aperture located at the top of the array improves targeting at shallow depths, near the skull surface. Spherical arrays have good focusing capabilities through the skull at the center of the array, but focusing on off-center locations is more challenging due to the natural geometric configuration and the angle of incidence with the skull. In order to mitigate this, the 64 elements closest to the aperture were rotated toward and focusing on a shallow target, and the 64 elements farthest from the aperture were rotated toward and focusing on a deeper target. Data illustrated that this array produced focusing on the somatosensory cortex with a gain of 4.38 and to the thalamus with a gain of 3.82. To improve upon this, the array placement was optimized based on phase aberration simulations, allowing for the elements with the largest impact on the gain at each focal point to be found. This optimization resulted in an array design that can focus on the somatosensory cortex with a gain of 5.19 and the thalamus with a gain of 4.45. Simulations were also performed to evaluate the ability of the array to focus on 28 additional brain regions, showing that off-center target regions can be stimulated, but those closer to the skull will require corrective steps to deliver the same amount of energy to those locations. This simulation and design process can be adapted to an individual monkey or human skull morphologies and specific target locations within individuals by using orientable 3-D printing of the transducer case and by electronic phase aberration correction.


Assuntos
Terapia por Ultrassom , Animais , Encéfalo/diagnóstico por imagem , Primatas , Crânio/diagnóstico por imagem , Transdutores
8.
Front Plant Sci ; 12: 749014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659318

RESUMO

Soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive soybean pests worldwide. Unlike many diseases, SCN doesn't show above ground evidence of disease until several weeks after infestation. Knowledge of Volatile Organic Compounds (VOCs) related to pests and pathogens of foliar tissue is extensive, however, information related to above ground VOCs in response to root damage is lacking. In temporal studies, gas chromatography-mass spectrometry analysis of VOCs from the foliar tissues of SCN infested plants yielded 107 VOCs, referred to as Common Plant Volatiles (CPVs), 33 with confirmed identities. Plants showed no significant stunting until 10 days after infestation. Total CPVs increased over time and were significantly higher from SCN infested plants compared to mock infested plants post 7 days after infestation (DAI). Hierarchical clustering analysis of expression ratios (SCN: Mock) across all time points revealed 5 groups, with the largest group containing VOCs elevated in response to SCN infestation. Linear projection of Principal Component Analysis clearly separated SCN infested from mock infested plants at time points 5, 7, 10 and 14 DAI. Elevated Styrene (CPV11), D-Limonene (CPV32), Tetradecane (CPV65), 2,6-Di-T-butyl-4-methylene-2,5-cyclohexadiene-1-one (CPV74), Butylated Hydroxytoluene (CPV76) and suppressed Ethylhexyl benzoate (CPV87) levels, were associated with SCN infestation prior to stunting. Our findings demonstrate that SCN infestation elevates the release of certain VOCs from foliage and that some are evident prior to symptom development. VOCs associated with SCN infestations prior to symptom development may be valuable for innovative diagnostic approaches.

9.
IEEE Trans Biomed Circuits Syst ; 15(4): 705-718, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398764

RESUMO

A 2D ultrasonic array is the ultimate form of a focused ultrasonic system, which enables electronically focusing beams in a 3D space. A 2D array is also a versatile tool for various applications such as 3D imaging, high-intensity focused ultrasound, particle manipulation, and pattern generation. However, building a 2D system involves complicated technologies: fabricating a 2D transducer array, developing a pitch-matched ASIC, and interconnecting the transducer and the ASIC. Previously, we successfully demonstrated 2D capacitive micromachined ultrasonic transducer (CMUT) arrays using various fabrication technologies. In this paper, we present a 2D ultrasonic transmit phased array based on a 32 × 32 CMUT array flip-chip bonded to a pitch-matched pulser ASIC for ultrasonic neuromodulation. The ASIC consists of 32 × 32 unipolar high-voltage (HV) pulsers, each of which occupies an area of 250 µm × 250 µm. The phase of each pulser output is individually programmable with a resolution of 1/fC/16, where fC is less than 10 MHz. This enables the fine granular control of a focus. The ASIC was fabricated in the TSMC 0.18- µm HV BCD process within an area of 9.8 mm × 9.8 mm, followed by a wafer-level solder bumping process. After flip-chip bonding an ASIC and a CMUT array, we identified shorted elements in the CMUT array using the built-in test function in the ASIC, which took approximately 9 minutes to scan the entire 32 × 32 array. A compact-form-factor wireless neural stimulator system-only requiring a connected 15-V DC power supply-was also developed, integrating a power management unit, a clock generator, and a Bluetooth Low-Energy enabled microcontroller. The focusing and steering capability of the system in a 3D space is demonstrated, while achieving a spatial-peak pulse-average intensity ( ISPPA) of 12.4 and 33.1 W/ cm2; and a 3-dB focal volume of 0.2 and 0.05 mm3-at a depth of 5 mm-at 2 and 3.4 MHz, respectively. We also characterized transmission of ultrasound through a mouse skull and compensated the phase distortion due to the skull by using the programmable phase-delay function in the ASIC, achieving 10% improvement in pressure and a tighter focus. Finally, we demonstrated a ultrasonic arbitrary pattern generation on a 5 mm × 5 mm plane at a depth of 5 mm.


Assuntos
Ultrassom , Dispositivos Eletrônicos Vestíveis , Animais , Desenho de Equipamento , Camundongos , Transdutores , Ultrassonografia
10.
IEEE Trans Biomed Circuits Syst ; 15(4): 692-704, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314360

RESUMO

In this work, we present a wireless ultrasonic neurostimulator, aiming at a truly wearable device for brain stimulation in small behaving animals. A 1D 5-MHz capacitive micromachined ultrasonic transducer (CMUT) array is adopted to implement a head-mounted stimulation device. A companion ASIC with integrated 16-channel high-voltage (60-V) pulsers was designed to drive the 16-element CMUT array. The ASIC can generate excitation signals with element-wise programmable phases and amplitudes: 1) programmable sixteen phase delays enable electrical beam focusing and steering, and 2) four scalable amplitude levels, implemented with a symmetric pulse-width-modulation technique, are sufficient to suppress unwanted sidelobes (apodization). The ASIC was fabricated in the TSMC 0.18- µm HV BCD process within a die size of 2.5 × 2.5 mm2. To realize a completely wearable system, the system is partitioned into two parts for weight distribution: 1) a head unit (17 mg) with the CMUT array, 2) a backpack unit (19.7 g) that includes electronics such as the ASIC, a power management unit, a wireless module, and a battery. Hydrophone-based acoustic measurements were performed to demonstrate the focusing and beam steering capability of the proposed system. Also, we achieved a peak-to-peak pressure of 2.1 MPa, which corresponds to a spatial peak pulse average intensity ( ISPPA) of 33.5 W/cm2, with a lateral full width at half maximum (FWHM) of 0.6 mm at a depth of 3.5 mm.


Assuntos
Ultrassom , Dispositivos Eletrônicos Vestíveis , Animais , Desenho de Equipamento , Transdutores , Ultrassonografia
11.
Artigo em Inglês | MEDLINE | ID: mdl-33905329

RESUMO

Air-coupled transducers with broad bandwidth are desired for many airborne applications, such as obstacle detection, haptic feedback, and flow metering. In this article, we present a design strategy and demonstrate a fabrication process for developing improved concentric annular- and novel spiral-shaped capacitive micromachined ultrasonic transducers (CMUTs) that can generate high output pressure and provide wide bandwidth in air. We explore the ability to implement complex geometries by photolithographic definition to improve the bandwidth of air-coupled CMUTs. The ring widths in the annular design were varied so that the device can be improved in terms of bandwidth when these rings resonate in parallel. Using the same ring width parameters for the spiral-shaped design but with a smoother transition between the ring widths along the spiral, the bandwidth of the spiral-shaped device is improved. With the reduced process complexity associated with the anodic-bonding-based fabrication process, a 25- [Formula: see text] vibrating silicon plate was bonded to a borosilicate glass wafer with up to 15- [Formula: see text] deep cavities. The fabricated devices show an atmospheric deflection profile that is in agreement with the FEM results to verify the vacuum sealing of the devices. The devices show a 3-dB fractional bandwidth (FBW) of 12% and 15% for spiral- and annular-shaped CMUTs, respectively. We measured a 127-dB sound pressure level at the surface of the transducers. The angular response of the fabricated CMUTs was also characterized. The results demonstrated in this article show the possibility of improving the bandwidth of air-coupled devices by exploring the flexibility in the design process associated with CMUT technology.

12.
Brain Stimul ; 14(3): 598-606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33774207

RESUMO

BACKGROUND: Focused ultrasound (FUS) has excellent characteristics over other non-invasive stimulation methods in terms of spatial resolution and steering capability of the target. FUS has not been tested in the cerebellar cortex and cellular effects of FUS are not fully understood. OBJECTIVE/HYPOTHESIS: To investigate how the activity of cerebellar Purkinje cells (PCs) is modulated by FUS with varying pulse durations and pulse repetition frequencies. METHODS: A glass microelectrode was inserted into the cerebellar vermis lobule 6 from the dorsal side to extracellularly record single unit activity of the PCs in anesthetized rats. Ultrasonic stimulation (500 kHz) was applied through a coupling cone, filled with degassed water, from the posterior side to target the recording area with varying pulse durations and frequencies. RESULTS: Simple spike (SS) activity of PCs was entrained by the FUS pattern where the probability of spike occurrences peaked at around 1 ms following the onset of the stimulus regardless of its duration (0.5, 1, or 2 ms). The level of entrainment was stronger with shorter pulse durations at 50-Hz pulse repetition frequency (PRF), however, peri-event histograms spread wider and the peaks delayed slightly at 100-Hz PRF, suggesting involvement of a long-lasting inhibitory mechanism. There was no significant difference between the average firing rates in the baseline and stimulation periods. CONCLUSION: FUS can entrain spiking activity of single cells on a spike-by-spike basis as demonstrated here in the rat cerebellar cortex. The observed modulation potentially results from the aggregate of excitatory and inhibitory effects of FUS on the entire cortical network rather than on the PCs alone.


Assuntos
Córtex Cerebelar , Células de Purkinje , Potenciais de Ação , Animais , Córtex Cerebral , Ratos , Ondas Ultrassônicas
13.
Artigo em Inglês | MEDLINE | ID: mdl-32759081

RESUMO

This article presents a row-column (RC) capacitive micromachined ultrasonic transducer (CMUT) array fabricated using anodic bonding on a borosilicate glass substrate. This is shown to reduce the bottom electrode-to-substrate capacitive coupling. This subsequently improves the relative response of the elements when top or bottom electrodes are used as the "signal" (active) electrode. This results in a more uniform performance for the two cases. Measured capacitance and resonant frequency, pulse-echo signal amplitude, and frequency response are presented to support this. Biasing configurations with varying ac and dc arrangements are applied and subsequently explored. Setting the net dc bias voltage across an off element to zero is found to be most effective to minimize spurious transmission. To achieve this, a custom switching circuit was designed and implemented. This circuit was also used to obtain orthogonal B-mode cross-sectional images of a rotationally asymmetric target.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32746179

RESUMO

This study demonstrates, in detail, the potential of using capacitive micromachined ultrasonic transducers (CMUTs) for acoustic angiography of the microvasculature. It is known that when ultrasound contrast agents (microbubbles) are excited with moderate acoustic pressure around their resonance (2-4 MHz), they produce higher order harmonics (greater than third harmonic) due to their nonlinear behavior. To date, the fundamental challenge has been the availability of a transducer that can generate the transmit signals to excite the microbubbles at low frequencies and, in the same cycle, confocally detect harmonics in the higher frequencies. We present a novel device structure and dual-mode operation of a CMUT that operates with a center frequency of 4.3 MHz and 150% bandwidth in the conventional mode for transmitting and a center frequency of 9.8 MHz and a 125.5% bandwidth in collapse mode for receiving. Output pressure of 1.7 MPapp is achieved on the surface of a single unfocused transducer. The mechanical index at the transducer surface is 0.56. FEM simulations are performed first to show the functionality of the proposed device, and then, the device fabrication is described in detail. Finally, we experimentally demonstrate the ability to detect the microbubble signals with good contrast, and the background reflection is adequately suppressed, indicating the feasibility of the presented approach for acoustic angiography.


Assuntos
Angiografia , Transdutores , Ultrassonografia , Angiografia/instrumentação , Angiografia/métodos , Meios de Contraste , Desenho de Equipamento , Análise de Elementos Finitos , Microbolhas , Imagens de Fantasmas , Ultrassonografia/instrumentação , Ultrassonografia/métodos
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6462-6465, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947322

RESUMO

In this paper, we present a second-generation wireless ultrasonic beamforming system, aiming for a truly wearable device for brain stimulation in small behaving animals. The fully-integrated, battery-operated system enables a self- contained untethered system. The system is partitioned into two parts for weight distribution: (1) a 1D capacitive micromachined transducer (CMUT) array on a separate head-mountable flexible printed circuit board (PCB), (2) a rigid back-mountable PCB including electronics such as a custom ASIC, a power management unit, a wireless module, and a battery. The newly developed ASIC not only enables a compact electronic system (30.5 mm x 63.5 mm) but also generates 3.4 times higher acoustic pressure (1.89 MPaPP), which corresponds to a spatial-peak pulse-average intensity (ISPPA) of 33.5 W/cm2, at a depth of 5 mm, compared to the first-generation ASIC. The full width at half maximum (FWHM) of the pressure is estimated to be 0.6 mm, achieving a sub-millimeter lateral resolution by using 5-MHz focused waves.


Assuntos
Ultrassom , Animais , Comportamento Animal , Encéfalo , Desenho de Equipamento , Técnicas Estereotáxicas , Transdutores
16.
Artigo em Inglês | MEDLINE | ID: mdl-30442605

RESUMO

The integration of intravascular ultrasound (IVUS) and intravascular photoacoustic (IVPA) imaging produces an imaging modality with high sensitivity and specificity which is particularly needed in interventional cardiology. Conventional side-looking IVUS imaging with a single-element ultrasound (US) transducer lacks forward-viewing capability, which limits the application of this imaging mode in intravascular intervention guidance, Doppler-based flow measurement, and visualization of nearly, or totally blocked arteries. For both side-looking and forward-looking imaging, the necessity to mechanically scan the US transducer limits the imaging frame rate, and therefore, array-based solutions are desired. In this paper, we present a low-cost, compact, high-speed, and programmable imaging system based on a field-programmable gate array suitable for dual-mode forward-looking IVUS/IVPA imaging. The system has 16 US transmit and receive channels and functions in multiple modes including interleaved photoacoustic (PA) and US imaging, hardware-based high-frame-rate US imaging, software-driven US imaging, and velocity measurement. The system is implemented in the register-transfer level, and the central system controller is implemented as a finite-state machine. The system was tested with a capacitive micromachined ultrasonic transducer array. A 170-frames-per-second (FPS) US imaging frame rate is achieved in the hardware-based high-frame-rate US imaging mode while the interleaved PA and US imaging mode operates at a 60-FPS US and a laser-limited 20-FPS PA imaging frame rate. The performance of the system benefits from the flexibility and efficiency provided by the low-level implementation. The resulting system provides a convenient backend platform for research and clinical IVPA and IVUS imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/métodos , Ultrassonografia de Intervenção/métodos , Algoritmos , Desenho de Equipamento , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Transdutores , Ultrassonografia de Intervenção/instrumentação
17.
Artigo em Inglês | MEDLINE | ID: mdl-30440288

RESUMO

In this work, we present preliminary characterization results from a 32 x 32 row-column (RC) addressed 2D capacitive micromachined ultrasonic transducer (CMUT) array. The device was fabricated using anodic bonding on a borosilicate glass substrate, which eliminates the substrate - bottom electrode coupling previously observed in traditional CMUT RC arrays fabricated on silicon substrates. The characterization results were compared for the top and bottom electrodes and include impedance measurements, pulseecho impulse responses, and 2D scans of the pressure field using a calibrated hydrophone. The results showed that the array elements behave similarly when ground and hot electrodes were switched between the top and bottom electrodes for all of the measured parameters including device capacitance, center frequency, and pulse-echo response amplitude. The pressure scans verified the highly customizable nature of RC arrays by showing multiple active element configurations. A sample cross-sectional image of a metal target was also demonstrated.


Assuntos
Ultrassom/instrumentação , Estudos Transversais , Capacitância Elétrica , Impedância Elétrica , Eletrodos , Desenho de Equipamento , Transdutores
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1596-1599, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440697

RESUMO

In this paper, we present a wireless ultrasound transmit (TX) beamforming system, potentially enabling wearable brain stimulation for small awake/behaving animals. The system is comprised of a 16-element capacitive micromachined transducer (CMUT) array, driven by a custom phased-array integrated circuit (IC), which is capable of generating high-voltage (13.5 V) excitation signals with sixteen phase delays and four amplitude levels. In addition, a Bluetooth low-energy module and a power management unit were integrated into the system, which realizes a battery-operated self-contained unit. We validated the functionality of the system by demonstrating beamforming and steering with a hydrophone measurement setup. We achieved an acoustic pressure output of 554 kPapp at the depth of 5 mm, which corresponds to a spatial-peak pulse-average intensity (ISPPA) of 2.9 W/cm2. The measured 6-dB beamwidth (0.4 mm) is promising in that it can stimulate a specific region of the brain, especially for small animals such as mice. Further smart partitioning of the system will enable a truly wearable device for small animals.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda/instrumentação , Transdutores , Ultrassonografia , Animais , Desenho de Equipamento , Camundongos
19.
J Microelectromech Syst ; 27(2): 190-200, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33746472

RESUMO

This paper describes the design and fabrication of an electrostatic MEMS switch that can be co-fabricated on the same substrate with a capacitive micromachined ultrasonic transducer (CMUT) as a transmit/receive (T/R) switch. The structure of the switch is modified from a single CMUT cell. An interrupted transmission line is defined across the center of the cell with control electrodes on both sides to pull a movable plate down. The plate has an insulation layer underneath and a metal bump is formed on the insulation layer and aligned to the transmission line gap, so that the switch could be turned on by pulling down the plate with electrostatic force and making the metal bump close the gap in the transmission line. The switch was designed using a finite-element model (FEM) and fabricated on a glass substrate using anodic bonding. A static characterization was first performed on a switch test structure, which shows the dc switching voltage was 68 V and the on-resistance was 50 Ω. The RF in and RF out isolation was measured as approximately 66 dB and insertion loss was approximately 4.5 dB for frequency range commonly used for medical ultrasound imaging. Then we performed the dynamic characterization in immersion. By setting the dc bias at 67 V, we found that the switch could be operated with a control-voltage as low as 2.5 V. The switching and release times are related to the rise time and the fall time of the control signal, respectively. The minimum switching time was measured as 1.34 µs with a control signal rise time of 300 ns, and the minimum release time was measured as 80 ns with a control signal fall time of 20 ns. We further demonstrated that a 1-kHz control signal with the optimized rise and fall times can be used to conduct and block a sinusoidal signal with 1-MHz frequency and 300-mV pp amplitude, as well as unipolar pulses with 5-V pp amplitude, 500-ns pulse width, and 2-kHz repetition rate. The presented MEMS switch could potentially eliminate the high-voltage process requirement for the on-chip front-end electronics of a CMUT-based ultrasound imaging system and thus improve the overall system efficiency.

20.
Artigo em Inglês | MEDLINE | ID: mdl-29283350

RESUMO

In this paper, we describe a capacitive micromachined ultrasonic transducer (CMUT) with improved transparency for photoacoustic imaging (PAI) with backside illumination. The CMUT was fabricated on a glass substrate with indium-tin oxide bottom electrodes. The plate was a 1.5- silicon layer formed over the glass cavities by anodic bonding, with a 1- silicon nitride passivation layer on top. The fabricated device shows approximately 30%-40% transmission in the wavelength range from 700 to 800 nm and approximately 40%-60% transmission in the wavelength range from 800 to 900 nm, which correspond to the wavelength range commonly used for in vivo PAI. The center frequency of the CMUT was 3.62 MHz in air and 1.4 MHz in immersion. Two preliminary PAI experiments were performed to demonstrate the imaging capability of the fabricated device. The first imaging target was a 0.7-mm diameter pencil lead in vegetable oil as a line target with a subwavelength cross section. A 2-mm-diameter single CMUT element with an optical fiber bundle attached to its backside was linearly scanned to reconstruct a 2-D cross-sectional PA image of the pencil lead. We investigated the spurious signals caused by the light absorption in the 1.5- silicon plate. For pencil lead as a strong absorber and also a strong reflector, the received echo signal due to the acoustic excitation generated by the absorption in silicon is approximately 30 dB lower than the received PA signal generated by the absorption in pencil lead at the wavelength of 830 nm. The second imaging target was a "loop-shape" polyethylene tube filled with indocyanine green solution ( ) suspended using fishing lines in a tissue-mimicking material. We formed a 3-D volumetric image of the phantom by scanning the transducer in the - and -directions. The two experimental imaging results demonstrated that CMUTs with the proposed structure are promising for PAI with backside illumination.


Assuntos
Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Transdutores , Ultrassonografia/instrumentação , Algoritmos , Desenho de Equipamento , Verde de Indocianina/química , Imagens de Fantasmas , Compostos de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...