Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phys Med ; 31(8): 963-968, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386892

RESUMO

PURPOSE: Tomotherapy MV-CT acquisitions of lung tumors lead to artifacts due to breathing-related motion. This could preclude the reliability of tumor based positioning. We investigate the effect of these artifacts on automatic registration and determine conditions under which correct positioning can be achieved. MATERIALS AND METHODS: MV-CT and 4D-CT scans of a dynamic thorax phantom were acquired with various motion amplitudes, directions, and periods. For each acquisition, the average kV-CT image was reconstructed from the 4D-CT data and rigidly registered with the corresponding MV-CT scan in a region of interest. Different kV-MV registration strategies have been assessed. RESULTS: All tested registration methods led to acceptable registration errors (within 1.3 ± 1.2 mm) for motion periods of 3 and 6 s, regardless of the motion amplitude, direction, and phase difference. However, a motion period of 5 s, equal to half the Tomotherapy gantry period, induced asymmetric artifacts within MV-CT and significantly degraded the registration accuracy. CONCLUSIONS: As long as the breathing period differs from 5 s, positioning based on averaged images of the tumor provides information about its daily baseline shift, and might therefore contribute to reducing margins, regardless of the registration method.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/fisiopatologia , Neoplasias Pulmonares/radioterapia , Movimento , Radioterapia de Intensidade Modulada , Automação , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas , Respiração , Rotação
2.
Med Phys ; 42(3): 1354-66, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25735290

RESUMO

PURPOSE: Intensity modulated proton therapy (IMPT) of head and neck (H&N) cancer patients may be improved by plan adaptation. The decision to adapt the treatment plan based on a dose recalculation on the current anatomy requires a diagnostic quality computed tomography (CT) scan of the patient. As gantry-mounted cone beam CT (CBCT) scanners are currently being offered by vendors, they may offer daily or weekly updates of patient anatomy. CBCT image quality may not be sufficient for accurate proton dose calculation and it is likely necessary to perform CBCT CT number correction. In this work, the authors investigated deformable image registration (DIR) of the planning CT (pCT) to the CBCT to generate a virtual CT (vCT) to be used for proton dose recalculation. METHODS: Datasets of six H&N cancer patients undergoing photon intensity modulated radiation therapy were used in this study to validate the vCT approach. Each dataset contained a CBCT acquired within 3 days of a replanning CT (rpCT), in addition to a pCT. The pCT and rpCT were delineated by a physician. A Morphons algorithm was employed in this work to perform DIR of the pCT to CBCT following a rigid registration of the two images. The contours from the pCT were deformed using the vector field resulting from DIR to yield a contoured vCT. The DIR accuracy was evaluated with a scale invariant feature transform (SIFT) algorithm comparing automatically identified matching features between vCT and CBCT. The rpCT was used as reference for evaluation of the vCT. The vCT and rpCT CT numbers were converted to stopping power ratio and the water equivalent thickness (WET) was calculated. IMPT dose distributions from treatment plans optimized on the pCT were recalculated with a Monte Carlo algorithm on the rpCT and vCT for comparison in terms of gamma index, dose volume histogram (DVH) statistics as well as proton range. The DIR generated contours on the vCT were compared to physician-drawn contours on the rpCT. RESULTS: The DIR accuracy was better than 1.4 mm according to the SIFT evaluation. The mean WET differences between vCT (pCT) and rpCT were below 1 mm (2.6 mm). The amount of voxels passing 3%/3 mm gamma criteria were above 95% for the vCT vs rpCT. When using the rpCT contour set to derive DVH statistics from dose distributions calculated on the rpCT and vCT the differences, expressed in terms of 30 fractions of 2 Gy, were within [-4, 2 Gy] for parotid glands (D(mean)), spinal cord (D(2%)), brainstem (D(2%)), and CTV (D(95%)). When using DIR generated contours for the vCT, those differences ranged within [-8, 11 Gy]. CONCLUSIONS: In this work, the authors generated CBCT based stopping power distributions using DIR of the pCT to a CBCT scan. DIR accuracy was below 1.4 mm as evaluated by the SIFT algorithm. Dose distributions calculated on the vCT agreed well to those calculated on the rpCT when using gamma index evaluation as well as DVH statistics based on the same contours. The use of DIR generated contours introduced variability in DVH statistics.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Processamento de Imagem Assistida por Computador , Terapia com Prótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada
3.
Phys Med Biol ; 60(2): 595-613, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25548912

RESUMO

The ability to perform dose recalculation on the anatomy of the day is important in the context of adaptive proton therapy. The objective of this study was to investigate the use of deformable image registration (DIR) and cone beam CT (CBCT) imaging to generate the daily stopping power distribution of the patient. We investigated the deformation of the planning CT scan (pCT) onto daily CBCT images to generate a virtual CT (vCT) using a deformable phantom designed for the head and neck (H & N) region. The phantom was imaged at a planning CT scanner in planning configuration, yielding a pCT and in deformed, treatment day configuration, yielding a reference CT (refCT). The treatment day configuration was additionally scanned at a CBCT scanner. A Morphons DIR algorithm was used to generate a vCT. The accuracy of the vCT was evaluated by comparison to the refCT in terms of corresponding features as identified by an adaptive scale invariant feature transform (aSIFT) algorithm. Additionally, the vCT CT numbers were compared to those of the refCT using both profiles and regions of interest and the volumes and overlap (DICE coefficients) of various phantom structures were compared. The water equivalent thickness (WET) of the vCT, refCT and pCT were also compared to evaluate proton range differences. Proton dose distributions from the same initial fluence were calculated on the refCT, vCT and pCT and compared in terms of proton range. The method was tested on a clinical dataset using a replanning CT scan acquired close in time to a CBCT scan as reference using the WET evaluation. Results from the aSIFT investigation suggest a deformation accuracy of 2-3 mm. The use of the Morphon algorithm did not distort CT number intensity in uniform regions and WET differences between vCT and refCT were of the order of 2% of the proton range. This result was confirmed by proton dose calculations. The patient results were consistent with phantom observations. In conclusion, our phantom study suggests the vCT approach is adequate for proton dose recalculation on the basis of CBCT imaging.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Terapia com Prótons/métodos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Imagens de Fantasmas
4.
Radiother Oncol ; 104(2): 173-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22841518

RESUMO

PURPOSE: To evaluate the impact of intra-fraction motion induced by regular breathing on treatment quality for helical tomotherapy treatments. MATERIAL AND METHODS: Four patients treated by simultaneous-integrated boost (SIB) and three by hypo-fractionated stereotactic treatments (hypo-fractionated, 18 Gy/fraction) were included. All patients were coached to ensure regular breathing. For the SIB group, the tumor volume was delineated using CT information only (CTV(CT)) and the boost region was based on PET information (GTV(PET), no CTV extension). In the hypo-fractionated group, a GTV based on CT information was contoured. In both groups, ITVs were defined according to 4D data. The PTV included the ITV plus a setup error margin. The treatment was planned using the tomotherapy TPS on 3D CT images. In order to verify the impact of intra-fraction motion and interplay effects, dose calculations were performed using a previously validated Monte Carlo model of tomotherapy (TomoPen): first on the planning 3D CT ("planned dose") and second, on the 10 phases of the 4D scan. For the latter, two dose distributions, termed "interplay simulated" or "no interplay" were computed with and without beamlet-phase correlation over the 10 phases and combined using deformable dose registration. RESULTS: In all cases, DVHs of "interplay simulated" dose distributions complied within 1% of the original clinical objectives used for planning, defined according to ICRU (report 83) and RTOG (trials 0236 and 0618) recommendations, for SIB and hypo-fractionated groups, respectively. For one patient in the hypo-fractionated group, D(mean) to the CTV(CT) was 2.6% and 2.5% higher than "planned" for "interplay simulated" and "no interplay", respectively. CONCLUSION: For the patients included in this study, assuming regular breathing, the results showed that interplay of breathing and tomotherapy delivery motions did not affect significantly plan delivery accuracy. Hence, accounting for intra-fraction motion through the definition of an ITV volume was sufficient to ensure tumor coverage.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Técnicas de Imagem de Sincronização Respiratória , Tomografia Computadorizada Espiral , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Idoso , Artefatos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Estadiamento de Neoplasias , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Medição de Risco , Estudos de Amostragem
5.
Int J Biomed Imaging ; 2011: 891585, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21197460

RESUMO

Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and easy to use. Recently, a diffeomorphic version of the Demons algorithm was proposed. This provides the advantage of producing invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons registration method is proposed and compared to conventional Morphons, Demons, and diffeomorphic Demons. The method is validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with and without variable contrast enhancement.

6.
Radiother Oncol ; 96(1): 131-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20542344

RESUMO

BACKGROUND AND PURPOSE: Adaptive strategies in radiotherapy (RT) require the knowledge of the total dose given to every organ of the body. Because of anatomical changes and setup errors non-rigid registration is necessary to map the different dose fractions to a common reference. This study evaluates practically if the accumulation of all of these registered dose fractions must take radiobiology into account in a classical clinical setting. MATERIALS AND METHODS: Ten patients with head and neck tumors treated by chemo-RT were used. Contrast-enhanced CT scans were acquired prior and during RT following delivery of mean doses of 14.2, 24.5, 35.0 and 44.9 Gy and the planned pre-treatment helical tomotherapy sinograms were applied on the per-treatment CTs to create a series of per-treatment dose distributions corresponding to each per-treatment CT image. In order to calculate the cumulative dose distribution, the per-treatment dose maps were non-rigidly deformed by using the deformation map computed by a non-rigid registration. The deformed dose maps were then summed in two ways: one while taking radiobiology into account and one without. These two strategies were compared using clinical surrogates in the target volumes (TV) and in surrounding organs at risk (OAR). RESULTS: The differences between the strategies, while statistically significant (p<0.05), are clinically irrelevant. In the OARs, the mean differences stay in the 0.01-0.07 Gy range for the total dose. In the targets, all mean differences stay in the 0.001-0.012 Gy range. However, some local high difference spots appear leading to punctual errors as high as 2.5 Gy. CONCLUSION: If using current radiotherapy practices and clinical recommendations based on dose surrogates computed globally on OARs and TVs, one does not need to take radiobiological effects into account while accumulating total dose as these lead to very small differences compared to a simple accumulation technique consisting of a linear sum of the dose fractions. However, care must be taken if other adaptive strategies, based on local rather than global information, are used.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Relação Dose-Resposta à Radiação , Humanos , Modelos Lineares , Tolerância a Radiação , Radiobiologia , Dosagem Radioterapêutica , Tomografia Computadorizada Espiral
7.
Radiother Oncol ; 85(2): 232-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17936388

RESUMO

PURPOSE: To improve treatment planning in radiotherapy for non-small cell lung cancer by including Respiratory Correlated-Computed Tomography (RC-CT) information in tumour delineation and dose planning. METHODS AND MATERIALS: Dense displacement fields were computed using a combination of rigid and non-rigid registrations between RC-CT phases. These registrations have been performed independently between each phase of the respiratory cycle and a reference phase for 13 patients. A manual delineation in the reference frame was propagated to every other phase according to the deformation fields recovered from the inter-phase registrations. Resulting delineations were compared to two manual delineations drawn by two physicians at each phase. On the other hand, dose distributions computed for every phase were deformed towards the reference phase. These distributions were then added on the reference phase to estimate the total dose received by each voxel through the whole respiratory cycle. RESULTS: The overlap between the deformed and the manual delineations was not significantly different than the overlap between the delineations made by the two physicians for 11 out of 13 patients thus proving that the method accuracy is comparable to inter-observer variability. Calculation of the effective dose distributions showed that these were conserved after deformation. CONCLUSION: We developed a method to use RC-CT information into the radiation treatment planning, including semi-automatic segmentation of lung tumours on each phase of the respiratory cycle and a total received dose per voxel estimation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Dosagem Radioterapêutica , Respiração , Tomografia Computadorizada por Raios X/métodos , Humanos , Variações Dependentes do Observador , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...