Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ILAR J ; 56(2): 169-78, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26323627

RESUMO

The gastrointestinal (GI) microbiota forms a mutualistic relationship with the host through complex and dynamic interactions. Because of the complexity and interindividual variation of the GI microbiota, investigating how members of the microbiota interact with each other, as well as with the host, is daunting. The altered Schaedler flora (ASF) is a model community of eight microorganisms that was developed by R.P. Orcutt and has been in use since the late 1970s. The eight microorganisms composing the ASF were all derived from mice, can be cultured in vitro, and are stably passed through multiple generations (at least 15 years or more by the authors) in gnotobiotic mice continually bred in isolator facilities. With the limitations associated with conventional, mono- or biassociated, and germfree mice, use of mice colonized with a consortium of known bacteria that naturally inhabit the murine gut offers a powerful system to investigate mechanisms governing host-microbiota relationships, and how members of the GI microbiota interact with one another. The ASF community offers significant advantages to study homeostatic as well as disease-related interactions by taking advantage of a well-defined, limited community of microorganisms. For example, quantification and spatial distribution of individual members, microbial genetic manipulation, genomic-scale analysis, and identification of microorganism-specific host immune responses are all achievable using the ASF model. This review compiles highlights associated with the 37-year history of the ASF, including descriptions of its continued use in biomedical research to elucidate the complexities of host-microbiome interactions in health and disease.


Assuntos
Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/metabolismo , Microbioma Gastrointestinal/genética , Vida Livre de Germes/genética , Vida Livre de Germes/fisiologia , Humanos , Camundongos
2.
Mamm Genome ; 17(11): 1093-104, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17091319

RESUMO

The mammalian gastrointestinal (GI) tract is inhabited by over a hundred species of symbiotic bacteria. Differences among individuals in the composition of the GI flora may contribute to variation in in vivo experimental analyses and disease susceptibility. To investigate potential interindividual differences in GI flora composition, we developed real-time quantitative PCR-based assays for the detection of the eight members of the Altered Schaedler Flora (ASF) as representative members of different bacterial niches within the mammalian GI tract. Quantitative and reproducible strain-specific variations in the numbers of the ASF members were observed across 23 different barrier-housed inbred mouse strains, suggesting that the ASF assays can be used as sentinels for changes in GI flora composition. A significant cage effect was also detected. Isogenic mice that cohabited at weaning, whether from the same or different litters, showed little variation in ASF profiles. Conversely, litters split among different cages at weaning showed divergence in ASF profiles after three weeks. Individual ASF profiles, once established, were highly stable over time in the absence of environmental perturbation. Furthermore, cohabitation of different inbred strains maintained most of the interstrain variation in the GI flora, supporting a role of host genetics in determining GI flora composition.


Assuntos
Meio Ambiente , Trato Gastrointestinal/microbiologia , Animais , Feminino , Vida Livre de Germes , Abrigo para Animais , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...