Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 114(3): 487-500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35608329

RESUMO

Ambrosia beetles from the scolytine tribe Xyleborini (Curculionidae) are important to the decomposition of woody plant material on every continent except Antarctica. These insects farm fungi on the walls of tunnels they build inside recently dead trees and rely on the fungi for nutrition during all stages of their lives. Such ambrosia fungi rely on the beetles to provide appropriate substrates and environmental conditions for growth. A small minority of xyleborine ambrosia beetle-fungal partnerships cause significant damage to healthy trees. The xyleborine beetle Coptoborus ochromactonus vectors a Fusarium (Hypocreales) fungus that is lethal to balsa (Ochroma pyramidale (Malvaceae)) trees in Ecuador. Although this pathogenic fungus and its associated beetle are not known to be established in the United States, several other non-native ambrosia beetle species are vectors of destructive plant diseases in this country. This fact and the acceleration of trade between South America and the United States demonstrate the importance of understanding fungal plant pathogens before they escape their native ranges. Here we identify the fungi accompanying Coptoborus ambrosia beetles collected in Ecuador. Classification based ribosomal internal transcribed spacer 1 (ITS) sequences revealed the most prevalent fungi associated with Coptoborus are Fusarium sp. and Graphium sp. (Microascales: Microascaceae), which have been confirmed as ambrosia fungi for xyleborine ambrosia beetles, and Clonostsachys sp. (Hypocreales), which is a diverse genus found abundantly in soils and associated with plants. Phylogenetic analyses of the Fusarium strains based on ITS, translation elongation factor (EF1-α), and two subunits of the DNA-directed RNA polymerase II (RPB1 and RPB2) identified them as Fusarium sp. AF-9 in the Ambrosia Fusarium Clade (AFC). This Fusarium species was previously associated with a few xyleborine ambrosia beetles, most notably the species complex Euwallacea fornicatus (Eichhoff 1868) (Curculionidae: Scolytinae: Xyleborini). Examination of ITS and EF1-α sequences showed a close affinity between the Graphium isolated from Coptoborus spp. and other xyleborine-associated Graphium as well as the soil fungus Graphium basitruncatum. This characterization of ambrosia fungi through DNA sequencing confirms the identity of a putative plant pathogen spread by Coptoborus beetles and expands the documented range of Fusarium and Graphium ambrosia fungi.


Assuntos
Besouros , Fusarium , Gorgulhos , Ambrosia , Animais , Besouros/microbiologia , Equador , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Plantas , Gorgulhos/microbiologia
2.
F1000Res ; 7: 222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057751

RESUMO

In the present study fungi collections were sampled in the Sangay (SP) and Llanganates (LP) National Parks, from which sequences of the regions of the internal transcribable spacer (ITS1-5.8S-ITS2) of the ribosomal DNA were obtained (RDNA). The taxonomic identification of fungi of the order Xylariales was achieved with the bioinformatic tools, to further study the phylogenetic relationships among the collected individuals and thus contribute with base information on their biological diversity, necessary to design and implement measures for the conservation of fungi. All records belong to the genus Xylaria, of these eight belong to PL and two to SP. A record was not identified at the species level, suggesting that it could be a new species. A phylogenetic tree of Maximum Likelihood was built.

3.
Plant Dis ; 82(7): 811-818, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30856956

RESUMO

A marker database was compiled for isolates of the potato and tomato late blight pathogen, Phytophthora infestans, originating from 41 locations which include 31 countries plus 10 regions within Mexico. Presently, the database contains information on 1,776 isolates for one or more of the following markers: restriction fragment length polymorphism (RFLP) "fingerprint" consisting of 23 bands; mating type; dilocus allozyme genotype; mitochondrial DNA haplotype; sensitivity to the fungicide metalaxyl; and virulence. In the database, 305 entries have unique RFLP fingerprints and 258 entries have unique multilocus genotypes based on RFLP fingerprint, dilocus allozyme genotype, and mating type. A nomenclature is described for naming multilocus genotypes based on the International Organization for Standardization (ISO) two-letter country code and a unique number. Forty-two previously published multilocus genotypes are represented in the database with references to publications. As a result of compilation of the database, seven new genotypes were identified and named. Cluster analysis of genotypes from clonally propagated populations worldwide generally confirmed a previously published classification of "old" and "new" genotypes. Genotypes from geographically distant countries were frequently clustered, and several old and new genotypes were found in two or more distant countries. The cluster analysis also demonstrated that A2 genotypes from Argentina differed from all others. The database is available via the Internet, and thus can serve as a resource for Phytophthora workers worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...