Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25226, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352743

RESUMO

Lymphadenitis is a commonly occurring and contagious disease in guinea pigs caused by different pathogens, including Streptococcus sp., Staphylococcus sp., and Corynebacterium sp. This study aimed to characterize the bacteria isolated from pus extracted from abscessed mandibular lymph nodes of diseased guinea pigs in Ecuador in 2019 and evaluate the in vitro antibacterial activity of the total extracts of three plant species. Isolates were recovered from three diseased guinea pigs with Lymphadenitis on a farm in Imbabura, Ecuador province. The bacteria were characterized through microbiological, biochemical, and molecular tests as Streptococcus equi subsp. zooepidemicus. Furthermore, the susceptibility of S. equi subsp. zooepidemicus to three plant extracts belonging to the Asteraceae family, Acmella ciliata, Bidens andicola, and Gazania splendens collected in Ecuador, were assessed in vitro by the microdilution method. Our data indicate that all the evaluated extracts showed activity, with a Minimum Inhibitory Concentration (MIC) of 22.50 mg/mL for Acmella ciliata, 11.25 mg/mL for Bidens andicola, and 5.60 mg/mL for Gazania splendens. Bidens andicola extract showed the highest efficacy with a % inhibition of 63.90 at the highest tested concentration (45 mg/mL). This is the first report on the bioactivity of these plant species against S. equi subsp. zooepidemicus.

2.
J Am Chem Soc ; 141(19): 7736-7742, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31030513

RESUMO

Acid ceramidase (AC) hydrolyzes ceramides into sphingoid bases and fatty acids. The enzyme is overexpressed in several types of cancer and Alzheimer's disease, and its genetic defect causes different incurable disorders. The availability of a method for the specific visualization of catalytically active AC in intracellular compartments is crucial for diagnosis and follow-up of therapeutic strategies in diseases linked to altered AC activity. This work was undertaken to develop activity-based probes for the detection of AC. Several analogues of the AC inhibitor SABRAC were synthesized and found to act as very potent (two-digit nM range) irreversible AC inhibitors by reaction with the active site Cys143. Detection of active AC in cell-free systems was achieved either by using fluorescent SABRAC analogues or by click chemistry with an azide-substituted analogue. The compound affording the best features allowed the unprecedented labeling of active AC in living cells.


Assuntos
Ceramidase Ácida/metabolismo , Imagem Molecular , Células A549 , Ceramidase Ácida/antagonistas & inibidores , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Humanos , Sondas Moleculares/metabolismo
3.
Chem Commun (Camb) ; 53(31): 4394-4397, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28379228

RESUMO

Dihydroceramide desaturase 1 (Des1) catalyzes the last step of ceramide synthesis de novo, thus regulating the physiologically relevant balance between dihydrosphingolipids and sphingolipids. Here we report on the configurational preference of Des1 towards isomeric Δ6-unsaturated dihydroceramide analogs and the discovery of a potent Des1 inhibitor.


Assuntos
Ceramidas/farmacologia , Ácidos Graxos Dessaturases/antagonistas & inibidores , Linhagem Celular Tumoral , Ceramidas/síntese química , Ceramidas/química , Química Click , Ensaios Enzimáticos , Ácidos Graxos Dessaturases/química , Humanos , Isomerismo , Cinética , Especificidade por Substrato
4.
Biochim Biophys Acta Gen Subj ; 1861(2): 264-275, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27894925

RESUMO

BACKGROUND: Autophagy consists on the delivery of cytoplasmic material and organelles to lysosomes for degradation. Research on autophagy is a growing field because deciphering the basic mechanisms of autophagy is key to understanding its role in health and disease, and to paving the way to discovering novel therapeutic strategies. Studies with chemotherapeutic drugs and pharmacological tools support a role for dihydroceramides as mediators of autophagy. However, their effect on the autophagy outcome (cell survival or death) is more controversial. METHODS: We have examined the capacity of structurally varied Des1 inhibitors to stimulate autophagy (LC3-II analysis), to increase dihydroceramides (mass spectrometry) and to reduce cell viability (SRB) in T98G and U87MG glioblastoma cells under different experimental conditions. RESULTS: The compounds activity on autophagy induction took place concomitantly with accumulation of dihydroceramides, which occurred by both stimulation of ceramide synthesis de novo and reduction of Des1 activity. However, autophagy was also induced by the test compounds after preincubation with myriocin and in cells with a reduced capacity to produce dihydroceramides (U87DND). Autophagy inhibition with 3-methyladenine in the de novo dihydroceramide synthesis competent U87MG cells increased cytotoxicity, while genetic inhibition of autophagy in U87DND cells, poorly efficient at synthesizing dihydroceramides, augmented resistance to the test compounds. CONCLUSION: Dihydroceramide desaturase 1 inhibitors activate autophagy via both dihydroceramide-dependent and independent pathways and the balance between the two pathways influences the final cell fate. GENERAL SIGNIFICANCE: The cells capacity to biosynthesize dihydroceramides must be taken into account in proautophagic Des1 inhibitors-including therapies.


Assuntos
Autofagia/efeitos dos fármacos , Ceramidas/metabolismo , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos
5.
Mol Biosyst ; 12(4): 1166-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928714

RESUMO

Although several reports describe the metabolic fate of sphingoid bases and their analogs, as well as their action and that of their phosphates as regulators of sphingolipid metabolizing-enzymes, similar studies for 3-ketosphinganine (KSa), the product of the first committed step in de novo sphingolipid biosynthesis, have not been reported. In this article we show that 3-ketosphinganine (KSa) and its dideuterated analog at C4 (d2KSa) are metabolized to produce high levels of dihydrosphingolipids in HGC27, T98G and U87MG cancer cells. In contrast, either direct C1 O-phosphorylation or N-acylation of d2KSa to produce dideuterated ketodihydrosphingolipids does not occur. We also show that cells respond to d2KSa treatment with induction of autophagy. Time-course experiments agree with sphinganine, sphinganine 1-phosphate and dihydroceramides being the mediators of autophagy stimulated by d2KSa. Enzyme inhibition studies support that inhibition of Des1 by 3-ketobases is caused by their dihydroceramide metabolites. However, this effect contributes to increasing dihydrosphingolipid levels only at short incubation times, since cells respond to long time exposure to 3-ketobases with Des1 overexpression. The translation of these overall effects into cell fate is discussed.


Assuntos
Autofagia/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas , Oxirredutases/antagonistas & inibidores , Esfingosina/farmacologia
6.
Chem Phys Lipids ; 197: 33-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26248324

RESUMO

Dihydroceramide desaturase (Des1) is the last enzyme in the de novo synthesis of ceramides (Cer). It catalyzes the insertion of a double bond into dihydroceramides (dhCer) to convert them to Cer, both of which are further metabolized to more complex (dihydro) sphingolipids. For many years dhCer have received poor attention, mainly due to their supposed lack of biological activity. It was not until about ten years ago that the concept that dhCer might have regulatory roles in biology emerged for the first time. Since then, multiple publications have established that dhCer are implicated in a wide spectrum of biological processes. Physiological and pathophysiological functions of dhCer have been recently reviewed. In this review we will focus on the biochemical features of Des1 and on its inhibition by different compounds with presumably different modes of action.


Assuntos
Ceramidas/metabolismo , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...