Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0250477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351916

RESUMO

Morphology of organisms is an essential source of evidence for taxonomic decisions and understanding of ecology and evolutionary history. The geometric structure (i.e., numeric description of shape) provides richer and mathematically different information about an organism's morphology than linear measurements. A little is known on how these two sources of morphological information (shape vs. size) contribute to the identification of organisms when implied simultaneously. This study hypothesized that combining geometric information on the outline with linear measurements results in better species identification than either evidence alone can provide. As a test system for our research, we used the microscopic spores of fungi from the genus Subulicystidium (Agaricomycetes, Basidiomycota). We analyzed 2D spore shape data via elliptic Fourier and principal component analyses. Using flexible discriminant analysis, we achieved the highest species identification success rate for a combination of shape and size descriptors (64.7%). The shape descriptors alone predicted species slightly better than size descriptors (61.5% vs. 59.1%). We conclude that adding geometric information on the outline to linear measurements improves the identification of the organisms. Despite the high relevance of spore traits for the taxonomy of fungi, they were previously rarely analyzed with the tools of geometric morphometrics. Therefore, we supplement our study with an open access protocol for digitizing and summarizing fungal spores' shape and size information. We propagate a broader use of geometric morphometric analysis for microscopic propagules of fungi and other organisms.


Assuntos
Basidiomycota , Processamento de Imagem Assistida por Computador , Esporos Fúngicos/citologia , Basidiomycota/classificação , Basidiomycota/citologia , Esporos Fúngicos/classificação
2.
Front Microbiol ; 11: 598321, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362746

RESUMO

Uzbekistan, located in Central Asia, harbors high diversity of woody plants. Diversity of wood-inhabiting fungi in the country, however, remained poorly known. This study summarizes the wood-inhabiting basidiomycte fungi (poroid and corticoid fungi plus similar taxa such as Merismodes, Phellodon, and Sarcodon) (Agaricomycetes, Basidiomycota) that have been found in Uzbekistan from 1950 to 2020. This work is based on 790 fungal occurrence records: 185 from recently collected specimens, 101 from herbarium specimens made by earlier collectors, and 504 from literature-based records. All data were deposited as a species occurrence record dataset in the Global Biodiversity Information Facility and also summarized in the form of an annotated checklist in this paper. All 286 available specimens were morphologically examined. For 138 specimens, the 114 ITS and 85 LSU nrDNA sequences were newly sequenced and used for phylogenetic analysis. In total, we confirm the presence of 153 species of wood-inhabiting poroid and corticioid fungi in Uzbekistan, of which 31 species are reported for the first time in Uzbekistan, including 19 that are also new to Central Asia. These 153 fungal species inhabit 100 host species from 42 genera of 23 families. Polyporales and Hymenochaetales are the most recorded fungal orders and are most widely distributed around the study area. This study provides the first comprehensively updated and annotated the checklist of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Such study should be expanded to other countries to further clarify species diversity of wood-inhabiting fungi around Central Asia.

3.
MycoKeys ; (35): 41-99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997447

RESUMO

Diversity of corticioid fungi (resupinate Basidiomycota), especially outside the northern temperate climatic zone, remains poorly explored. Furthermore, most of the known species are delimited by morphological concepts only and, not rarely, these concepts are too broad and need to be tested by molecular tools. For many decades, the delimitation of species in the genus Subulicystidium (Hydnodontaceae, Trechisporales) was a challenge for mycologists. The presence of numerous transitional forms as to basidiospore size and shape hindered species delimitation and almost no data on molecular diversity have been available. In this study, an extensive set of 144 Subulicystidium specimens from Paleo- and Neotropics was examined. Forty-nine sequences of ITS nuclear ribosomal DNA region and 51 sequences of 28S nuclear ribosomal DNA region from fruit bodies of Subulicystidium were obtained and analysed within the barcoding gap framework and with phylogenetic Bayesian and Maximum likelihood approaches. Eleven new species of Subulicystidium are described based on morphology and molecular analyses: Subulicystidium boidinii, S. fusisporum, S. grandisporum, S. harpagum, S. inornatum, S. oberwinkleri, S. parvisporum, S. rarocrystallinum, S. robustius, S. ryvardenii and S. tedersooi. Morphological and DNA-evidenced borders were revised for the five previously known species: S. naviculatum, S. nikau, S. obtusisporum, S. brachysporum and S. meridense. Species-level variation in basidiospore size and shape was estimated based on systematic measurements of 2840 spores from 67 sequenced specimens. An updated identification key to all known species of Subulicystidium is provided.

4.
Biodivers Data J ; (5): e22426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29362557

RESUMO

BACKGROUND: Fungi play crucial roles in ecosystems and are among the species-richest organism groups on Earth. However, knowledge on their occurrence lags behind the data for animals and plants. Recent analyses of fungal occurrence data from Western, Central and Northern Europe provided important insights into response of fungi to global warming. The consequences of the global changes for biodiversity on a larger geographical scale are not yet understood. Landscapes of Eastern Europe and particularly of eastern Ukraine, with their specific geological history, vegetation and climate, can add substantially new information about fungal diversity in Europe. NEW INFORMATION: We describe the dataset and provide a checklist of aphyllophoroid fungi (non-gilled macroscopic Basidiomycota) from eastern Ukraine sampled in 16 areas between 2007 and 2011. The dataset was managed on the PlutoF biodiversity workbench (http://dx.doi.org/10.15156/BIO/587471) and can also be accessed via Global Biodiversity Information Facility (GBIF, parts of datasets https://doi.org/10.15468/kuspj6 and https://doi.org/10.15468/h7qtfd). This dataset includes 3418 occurences, namely 2727 specimens and 691 observations of fructifications belonging to 349 species of fungi. With these data, the digitised CWU herbarium (V. N. Karazin Kharkiv National University, Ukraine) doubled in size A most detailed description of the substrate's properties and habitat for each record is provided. The specimen records are supplemented by 26 nuclear ribosomal DNA ITS sequences and six 28S sequences. Additionally, 287 photographs depicting diagnostic macro- and microscopic features of fungal fruitbodies as well as studied habitats are linked to the dataset. Most of the specimens have at least one mention in literature and relevant references are displayed as associated with specimen data. In total, 16 publication references are linked to the dataset. The dataset sheds new light on the fungal diversity of Eastern Europe. It is expected to complement other public sources of fungal occurrence information on continental and global levels in addressing macroecological and biogeographical questions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...