Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 716: 149954, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704887

RESUMO

Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.


Assuntos
Membrana Celular , Colesterol , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Células Vero , Chlorocebus aethiops , Colesterol/metabolismo , Animais , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Membrana Celular/metabolismo , Membrana Celular/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , Proteínas de Transporte/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Ligação Proteica
2.
Methods Mol Biol ; 2773: 105-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236541

RESUMO

In vivo whole-body imaging, using optical tools based on bioluminescence and fluorescence detection, offers tremendous opportunities to specifically determine the spatiotemporal resolution of cancer cells within the tested animals. This enables the study of many aspects of cancer biology, including cell proliferation, trafficking, and invasions. The antitumor therapeutic properties of various tested compounds (e.g., CD19 CAR-T cells, used for cancer immunotherapy) can be monitored within the same animal at different time points, significantly reducing the number of animals used in the study as indicated in this method.


Assuntos
Neoplasias , Pesquisa , Animais , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Biologia , Proliferação de Células , Neoplasias/diagnóstico por imagem
3.
Cells ; 12(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37759507

RESUMO

Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a crucial role in maintaining normal homeostatic processes under the pathogenesis of various inflammatory and autoimmune diseases. This context-dependent effect from a cytokine is due to two distinctive forms of signaling: cis-signaling and trans-signaling. IL-6 cis-signaling involves binding IL-6 to the membrane-bound IL-6 receptor and Glycoprotein 130 (GP130) signal-transducing subunit. By contrast, in IL-6 trans-signaling, complexes of IL-6 and the soluble form of the IL-6 receptor (sIL-6R) signal via membrane-bound GP130. Various strategies have been employed in the past decade to target the pro-inflammatory effect of IL-6 in numerous inflammatory disorders. However, their development has been hindered since these approaches generally target global IL-6 signaling, also affecting the anti-inflammatory effects of IL-6 signaling too. Therefore, novel strategies explicitly targeting the pro-inflammatory IL-6 trans-signaling without affecting the IL-6 cis-signaling are required and carry immense therapeutic potential. Here, we have developed a novel approach to specifically decoy IL-6-mediated trans-signaling by modulating alternative splicing in GP130, an IL-6 signal transducer, by employing splice switching oligonucleotides (SSO), to induce the expression of truncated soluble isoforms of the protein GP130. This isoform is devoid of signaling domains but allows for specifically sequestering the IL-6/sIL-6R receptor complex with high affinity in serum and thereby suppressing inflammation. Using the state-of-the-art Pip6a cell-penetrating peptide conjugated to PMO-based SSO targeting GP130 for efficient in vivo delivery, reduced disease phenotypes in two different inflammatory mouse models of systemic and intestinal inflammation were observed. Overall, this novel gene therapy platform holds great potential as a refined therapeutic intervention for chronic inflammatory diseases.


Assuntos
Citocinas , Interleucina-6 , Animais , Camundongos , Receptor gp130 de Citocina , Inflamação , Oligonucleotídeos
4.
Animals (Basel) ; 13(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37627407

RESUMO

Effective vaccines are needed to fight the COVID-19 pandemic. Forty golden hamsters were inoculated with two promising vaccine candidates and eighteen animals were used in pilot trials with viral challenge. ELISA assays were performed to determine endpoint serum titres for specific antibodies and virus neutralisation tests were used to evaluate the efficacy of antibodies. All tests with serum from vaccinated hamsters were negative even after booster vaccinations and changes in vaccination protocol. We concluded that antibodies did not have sufficient neutralising properties. Refinements were observed at all steps, and the in vitro method (virus neutralisation test) presented a replacement measure and ultimately lead to a reduction in the total number of animals used in the project. The institutional animal welfare officer and institutional designated veterinarian approved the reuse or rehoming of the surplus animals. Simple socialization procedures were performed and ultimately 19 animals were rehomed, and feedback was collected. Recently, FELASA published recommendations for rehoming of animals used for scientific and educational purposes, with species-specific guidelines, including mice, rats, and rabbits. Based on our positive experience and feedback from adopters, we concluded that the rehoming of rodents, including hamsters, is not only possible, but highly recommended.

5.
Front Immunol ; 13: 940969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979366

RESUMO

The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Doença de Alzheimer/patologia , Humanos , Inflamassomos , Inflamação/patologia , Doenças Neurodegenerativas/patologia , Transdução de Sinais/fisiologia
6.
FASEB J ; 35(6): e21651, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34004056

RESUMO

The SARS-CoV-2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of spike-ACE2 binding and cell fusion could support the identification of compounds with inhibitory effects. Here, we demonstrate that the integrity of disulfide bonds within the receptor-binding domain (RBD) plays an important role in the membrane fusion process although their disruption does not prevent binding of spike protein to ACE2. Several reducing agents and thiol-reactive compounds are able to inhibit viral entry. N-acetyl cysteine amide, L-ascorbic acid, JTT-705, and auranofin prevented syncytia formation, viral entry into cells, and infection in a mouse model, supporting disulfides of the RBD as a therapeutically relevant target.


Assuntos
Acetilcisteína/análogos & derivados , Amidas/farmacologia , Ácido Ascórbico/farmacologia , Auranofina/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Dissulfetos/metabolismo , Ésteres/farmacologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Sulfidrila/farmacologia , Internalização do Vírus/efeitos dos fármacos , Acetilcisteína/farmacologia , COVID-19/metabolismo , COVID-19/patologia , Células HEK293 , Humanos
7.
Vaccines (Basel) ; 9(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925446

RESUMO

The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which may impair subsequent vaccination. In order to compare polypeptide scaffolds of different size and oligomerization state with respect to their efficiency, including anti-scaffold immunity, we compared several strategies of presentation of the RBD domain of the SARS-CoV-2 spike protein, an antigen aiming to generate neutralizing antibodies. A comparison of several genetic fusions of RBD to different nanoscaffolding domains (foldon, ferritin, lumazine synthase, and ß-annulus peptide) delivered as DNA plasmids demonstrated a strongly augmented immune response, with high titers of neutralizing antibodies and a robust T-cell response in mice. Antibody titers and virus neutralization were most potently enhanced by fusion to the small ß-annulus peptide scaffold, which itself triggered a minimal response in contrast to larger scaffolds. The ß-annulus fused RBD protein increased residence in lymph nodes and triggered the most potent viral neutralization in immunization by a recombinant protein. Results of the study support the use of a nanoscaffolding platform using the ß-annulus peptide for vaccine design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...