Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 19(1): 77-85, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31570820

RESUMO

The reduction of Pt content in the cathode for proton exchange membrane fuel cells is highly desirable to lower their costs. However, lowering the Pt loading of the cathodic electrode leads to high voltage losses. These voltage losses are known to originate from the mass transport resistance of O2 through the platinum-ionomer interface, the location of the Pt particle with respect to the carbon support and the supports' structures. In this study, we present a new Pt catalyst/support design that substantially reduces local oxygen-related mass transport resistance. The use of chemically modified carbon supports with tailored porosity enabled controlled deposition of Pt nanoparticles on the outer and inner surface of the support particles. This resulted in an unprecedented uniform coverage of the ionomer over the high surface-area carbon supports, especially under dry operating conditions. Consequently, the present catalyst design exhibits previously unachieved fuel cell power densities in addition to high stability under voltage cycling. Thanks to the Coulombic interaction between the ionomer and N groups on the carbon support, homogeneous ionomer distribution and reproducibility during ink manufacturing process is ensured.

2.
Chem Sci ; 6(10): 5635-5642, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29861900

RESUMO

The development of efficient energy conversion systems requires precise engineering of electrochemical interfaces and thus asks for in situ techniques to probe the structure and the composition of the dynamic electrode/electrolyte interfacial region. This work demonstrates the potential of the near ambient pressure X-ray photoelectron spectroscopy (NAPXPS) for in situ studies of processes occurring at the interface between a metal electrode and a liquid electrolyte. By using a model membrane-electrode assembly of a high temperature phosphoric acid-imbibed proton exchange membrane fuel cell, and combining NAPXPS measurements with the density functional theory, it was possible to monitor such fundamental processes as dissociation and migration of the phosphoric acid within a nanostructured Pt electrode under polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...