Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(7): 9803-9814, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045129

RESUMO

We demonstrate theoretically and experimentally a high level of control of the four-wave mixing process in an inert gas-filled inhibited-coupling guiding hollow-core photonic crystal fiber. The specific multiple-branch dispersion profile in such fibers allows both correlated and separable bi-photon states to be produced. By controlling the choice of gas and its pressure and the fiber length, we experimentally generate various joint spectral intensity profiles in a stimulated regime that is transferable to the spontaneous regime. The generated profiles may cover both spectrally separable and correlated bi-photon states and feature frequency tuning over tens of THz, demonstrating a large dynamic control that will be very useful when implemented in the spontaneous regime as a photon pair source.

2.
Opt Lett ; 42(13): 2583-2586, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957290

RESUMO

We report on the experimental characterization of a novel nonlinear liquid-filled hollow-core photonic crystal fiber for the generation of photon pairs at a telecommunication wavelength through spontaneous four-wave mixing (SFWM). We show that the optimization procedure in view of this application links the choice of the nonlinear liquid to the design parameters of the fiber, and we give an example of such an optimization at telecom wavelengths. Combining the modeling of the fiber and classical characterization techniques at these wavelengths, we identify for the chosen fiber and liquid combination SFWM phase-matching frequency ranges with no Raman scattering noise contamination. This is a first step toward obtaining a telecom band fibered photon-pair source with a high signal-to-noise ratio.

3.
Phys Rev Lett ; 110(16): 160502, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679588

RESUMO

We demonstrate the direct generation of polarization-entangled photon pairs at room temperature and telecom wavelength in an AlGaAs semiconductor waveguide. The source is based on spontaneous parametric down-conversion with a counterpropagating phase-matching scheme. The quality of the two-photon state is assessed by the reconstruction of the density matrix giving a raw fidelity to a Bell state of 0.83; a theoretical model, taking into account the experimental parameters, provides ways to understand and control the amount of entanglement. Its compatibility with electrical injection, together with the high versatility of the generated two-photon state, make this source an attractive candidate for completely integrated quantum photonics devices.

4.
Opt Express ; 18(10): 9967-75, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20588851

RESUMO

We experimentally demonstrate an integrated semiconductor ridge microcavity source of counterpropagating twin photons at room temperature in the telecom range. Based on type II parametric down conversion with a counterpropagating phase-matching, pump photons generate photon pairs with an efficiency of about 10(-11) and a spectral linewidth of 0.3 nm for a 1 mm long sample. The indistiguishability of the photons of the pair is measured via a Hong-Ou-Mandel two-photon interference experiment showing a visibility of 85 %. This work opens a route towards new guided-wave semiconductor quantum devices.


Assuntos
Iluminação/instrumentação , Refratometria/instrumentação , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Integração de Sistemas , Temperatura
5.
Nanotechnology ; 20(16): 165304, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19420569

RESUMO

We have used an atomic force microscope (AFM) to manipulate and study ligand-capped cadmium selenide nanorods deposited on highly oriented pyrolitic graphite (HOPG). The AFM tip was used to manipulate (i.e., translate and rotate) the nanorods by applying a force perpendicular to the nanorod axis. The manipulation result was shown to depend on the point of impact of the AFM tip with the nanorod and whether the nanorod had been manipulated previously. Forces applied parallel to the nanorod axis, however, did not give rise to manipulation. These results are interpreted by considering the atomic-scale interactions of the HOPG substrate with the organic ligands surrounding the nanorods. The vertical deflection of the cantilever was recorded during manipulation and was combined with a model in order to estimate the value of the horizontal force between the tip and nanorod during manipulation. This horizontal force is estimated to be on the order of a few tens of nN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...