Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0299562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662683

RESUMO

Elemental ratios (δ13C, δ15N and C/N) and carbon and nitrogen concentrations in macrophytes, sediments and sponges of the hypersaline Al-Kharrar Lagoon (KL), central eastern Red Sea coast, were measured to distinguish their sources, pathways and see how they have been influenced by biogeochemical processes and terrestrial inputs. The mangroves and halophytes showed the most depleted δ13C values of -27.07±0.2 ‰ and -28.34±0.4 ‰, respectively, indicating their preferential 12C uptake, similar to C3-photosynthetic plants, except for the halophytes Atriplex sp. and Suaeda vermiculata which showed δ13C of -14.31±0.6 ‰, similar to C4-plants. Macroalgae were divided into A and B groups based on their δ13C values. The δ13C of macroalgae A averaged -15.41±0.4 ‰, whereas macroalgae B and seagrasses showed values of -7.41±0.8 ‰ and -7.98 ‰, suggesting uptake of HCO3- as a source for CO2 during photosynthesis. The δ13C of sponges was -10.7±0.3 ‰, suggesting that macroalgae and seagrasses are their main favoured diets. Substrates of all these taxa showed δ13C of -15.52±0.8 ‰, suggesting the KL is at present a macroalgae-dominated lagoon. The δ15N in taxa/sediments averaged 1.68 ‰, suggesting that atmospheric N2-fixation is the main source of nitrogen in/around the lagoon. The heaviest δ15N (10.58 ‰) in halophytes growing in algal mats and sabkha is possibly due to denitrification and ammonia evaporation. The macrophytes in the KL showed high C %, N %, and C/N ratios, but this is not indicated in their substrates due possibly to a rapid turnover of dense, hypersaline waters carrying most of the detached organic materials out into the Red Sea. The δ13C allowed separation of subaerial from aquatic macrophytes, a proxy that could be used when interpreting paleo-sea level or paleoclimatic changes from the coastal marine sediments.


Assuntos
Isótopos de Carbono , Carbono , Sedimentos Geológicos , Isótopos de Nitrogênio , Nitrogênio , Nitrogênio/metabolismo , Nitrogênio/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Arábia Saudita , Carbono/metabolismo , Carbono/análise , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Isótopos de Carbono/análise , Oceano Índico , Alga Marinha/metabolismo , Plantas/metabolismo
2.
J Hazard Mater ; 459: 132205, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37604036

RESUMO

Comprehensive air and surface soil monitoring was conducted for new and legacy organochlorine pesticides (OCPs) to fill the knowledge and data gap on the sources and fate of pesticidal persistent organic pollutants (POPs) in the Sultanate of Oman. DDTs in agricultural soil samples ranged from 0.013 to 95.80 ng/g (mean: 8.4 ± 25.06 ng/g), with a median value of 0.07 ng/g. The highest concentration was observed at Shinas, where intensive agricultural practice is prevalent. The dominance of p,p'-DDT in soil and air reflected technical DDT formulation usage in Oman. Among newly enlisted POPs, pentachlorobenzene had the maximum detection frequency in air (47%) and soil (41%). Over 90% of sites reflected extensive past use of hexachlorobenzene. Major OCP isomers and metabolites showed net volatilisation from the agricultural soil, thereby indicating concurrent emission and re-emission processes from the soil of Oman. However, the cleansing effect of oceanic air mass is the possible reason for relatively lower atmospheric OCP levels from a previous study. Although DDT displayed maximum cancer risk, the level is below the permissible limit. DDT primarily stemmed from obsolete stock and inadequate management practices. Hence, we suggest there is a need for DDT regulation in Oman.

3.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175109

RESUMO

Foodborne pathogens can have devastating repercussions and significantly threaten public health. Therefore, it is indeed essential to guarantee the sustainability of our food production. Food preservation and storage using nanocomposites is a promising strategy. Accordingly, the present research's objectives were to identify and isolate a few foodborne pathogens from food products, (ii) synthesize and characterize silver nanoparticles (AgNPs) using wet chemical reduction into the lamellar space layer of montmorillonite (MMT), and (iii) investigate the antibacterial potential of the AgNPs/MMT nanocomposite versus isolated strains of bacteria. Six bacterial species, including Escherichia coli, Salmonella spp., Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus were isolated from some food products (meat, fish, cheese, and vegetables). The Ag/MMT nanocomposite was synthesized and characterized using UV-visible spectroscopy, transmission electron microscopy, particle size analyzer, zeta potential, X-ray diffraction (XRD), and scanning electron microscopy with dispersive energy X-ray (EDX). The antibacterial effectiveness of the AgNPs/MMT nanocomposite further investigated distinct bacterial species using a zone of inhibition assay and microtiter-based methods. Nanoparticles with a narrow dimension range of 12 to 30 nm were identified using TEM analysis. The SEM was employed to view the sizeable flakes of the AgNPs/MMT. At 416 nm, the most excellent UV absorption was measured. Four silver metallic diffraction peaks were found in the XRD pattern during the study, and the EDX spectrum revealed a strong signal attributed to Ag nanocrystals. AgNPs/MMT figured out the powerful antibacterial action. The AgNPs/MMT nanocomposite confirmed outstanding minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six isolates of foodborne pathogens, ranging from 15 to 75 µg/mL, respectively. The AgNPs/MMT's antibacterial potential against gram-negative bacteria was noticeably better than gram-positive bacteria. Therefore, the AgNPs/MMT nanocomposite has the potential to be used as a reliable deactivator in food processing and preservation to protect against foodborne pathogenic bacteria. This suggests that the nanocomposite may be effective at inhibiting the growth and proliferation of harmful bacteria in food, which could help to reduce the risk of foodborne illness.


Assuntos
Anti-Infecciosos Locais , Nanopartículas Metálicas , Nanocompostos , Animais , Prata/farmacologia , Prata/química , Bentonita/farmacologia , Bentonita/química , Anti-Infecciosos Locais/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Bactérias , Nanocompostos/química , Difração de Raios X
4.
Mar Pollut Bull ; 189: 114806, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36967683

RESUMO

Direct measurements of dissolved N2O concentrations, fluxes and saturation percentages undertaken for the first time in two coastal lagoons - Al-Shabab and Al-Arbaeen, along the east coast of the Red Sea, revealed the region as a significant source of N2O to the atmosphere. The exacerbated dissolved inorganic nitrogen (DIN) from various anthropogenic sources led to substantial oxygen depletion in both the lagoons, which turned to bottom anoxia at Al-Arbaeen lagoon during the spring season. We assume that the accumulation of N2O is caused by nitrifier-denitrification in the hypoxic/anoxic boundaries. In fact, the results indicated that oxygen-depleted bottom waters favoured denitrification when the oxygenated surface waters recorded nitrification signals. Overall, the N2O concentration ranged from 109.4 to 788.6 nM (40.6-325.6 nM) in spring and 58.7 to 209.8 nM (35.8-89.9 nM) in winter in the Al-Arbaeen (Al-Shabab) lagoon. The N2O flux ranged from 647.1 to 1763.2 µmol m-2 day-1 (85.9 to 160.2 µmol m-2 day-1) and 112.5 to 150.8 µmol m-2 day-1 (76.1 to 88.7 µmol m-2 day-1) in the spring and winter respectively, in the Al-Arbaeen (Al-Shabab) lagoons. The ongoing developmental activities may worsen the current situation of hypoxia and associated biogeochemical feedbacks; therefore, the present results underline the need for continuous monitoring of both lagoons to restrict more severe oxygen depletion in future.


Assuntos
Nitrificação , Óxido Nitroso , Óxido Nitroso/análise , Oceano Índico , Oxigênio , Nitrogênio/análise , Desnitrificação
5.
Mar Drugs ; 21(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36827102

RESUMO

Titanium dioxide (TiO2) nanoparticles were synthesized via a novel eco-friendly green chemistry approach using marine natural extracts of two red algae (Bostrychia tenella and Laurencia obtusa), a green alga (Halimeda tuna), and a brown alga (Sargassum filipendula) along with a marine sponge sample identified as Carteriospongia foliascens. X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis, X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) were employed to characterize the crystal structure, surface morphology, and optical properties of the synthesized nanoparticles. Each of the as-synthesized marine extract based TiO2 nanoparticles was individually incorporated as an antifouling agent to form a newly fabricated marine paint formulation. The newly prepared formulations were applied on unprimed steel panels. A comparative study with a commercial antifouling paint (Sipes Transocean Coatings Optima) was carried out. After 108 days of the coated steel panels' immersion in the Eastern Harbour seawater of Alexandria-Egypt, the prepared paints using B. tenella and C. foliascens extracts demonstrated an excellent antifouling performance toward fouling organisms by inhibiting their settlement and controlling their adhesion onto the immersed panels. In contrast, heavy fouling with barnacles was observed on the surface of the coated panel with the commercial paint. The physicochemical parameters of the seawater surrounding the immersed coated panels were estimated to investigate the influence of the fabricated paint formulations. Interestingly, no effects of the immersed coated panels on the physicochemical characteristics of the surrounding seawater were observed. Based on the obtained results and a comparison with commercially available antifouling products, the marine extract based TiO2 nanoparticle preparations of B. tenella and C. foliascens are promising candidates for eco-friendly antifouling agents. Based on the obtained results and a comparison with commercially available antifouling products, the marine extract based TiO2 nanoparticle preparations of B. tenella and C. foliascens are promising candidates for eco-friendly antifouling agents, which could be attributed to the small crystallite sizes of 22.86 and 8.3 nm, respectively, in addition to the incorporation of carbon in the crystal structure of the nanoparticles.


Assuntos
Incrustação Biológica , Nanopartículas Metálicas , Nanopartículas , Incrustação Biológica/prevenção & controle , Titânio/química , Nanopartículas/química , Egito , Extratos Vegetais/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Luminescence ; 38(7): 1358-1367, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36657955

RESUMO

Polypropylene textiles have been used in the development of various industrial products, such as automotives, plastic furniture, and medical tools. However, polypropylene resists dyeing due to a deficiency of active staining spots. Here, we developed a new strategy towards new afterglow and photochromic fibres from recycled polypropylene plastics using plasma-supported coloration with rare-earth activated aluminate nanoparticles (REANPs). Plasma curing was used to generate active dyeing sites on the polypropylene surface. A thin film of REANPs (2-10 nm) was deposited onto the plasma-pretreated polypropylene surface. Various analytical techniques were applied to inspect the morphology of the REANP-finished polypropylene fibres. The polypropylene dyeing activity was much improved after being exposed to plasma. Both photoluminescence analysis and Commission internationale de l'éclairage (CIE) laboratory coordinates proved that the polypropylene fibres exhibited a white colour in daylight and green in ultraviolet light. The thin afterglow layer immobilized onto the polypropylene surface exhibited an emission band of 524 nm upon excitation at 365 nm. The sliding angles dropped from 12° to 9°, but the contacting angles increased from 139.4° to 145.0° when the REANP ratio was raised. These findings show that REANP-finished polypropylene had good colourfastness, antimicrobial activity, and ultraviolet light blocking. Both stiffness and permeability to air of REANP-finished polypropylene were explored to designate excellent comfort characteristics.


Assuntos
Nanopartículas , Plásticos , Polipropilenos , Raios Ultravioleta
7.
Environ Pollut ; 315: 120447, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36270566

RESUMO

The abundance of plastic debris (PDs) and its correlation with phthalic acid esters (PAEs), a class of pollutants associated with plastics, is not well understood, although PDs have been reported in relation to the release and distribution of aquatic pollutants such as PAEs. Few studies have linked the distribution of these pollutants in seawater. The current study examined the abundance and relationship of PDs and PAEs in seawater from Sharm Obhur and the Red Sea. Estimates were also made of their ecological impacts. Sharm Obhur is a semi-enclosed bay on the eastern shore of the Red Sea, near Jeddah, Saudi Arabia, and is heavily impacted by human activities. Contaminants from Sharm Obhur may be transported into the deep waters of the Red Sea by the subsurface outflow. The PAEs concentrations in the study area ranged from 0.8 to 1224 ng/L. Among the six PAEs studied, diethyl phthalate (DEP) (22-1124 ng/L), di-n-butyl phthalate (DBP) (9-346 ng/L) and di (2-ethylhexyl) phthalate (DEHP) (62-640 ng/L) were the predominant additives detected across all the sampling sits. Whereas the other PAEs, dimethyl phthalate (DMP) (5-76 ng/L), benzyl butyl phthalate (BBP) (4-25 ng/L) and di-n-octyl phthalate DnOp (0.5-80 ng/L) were generally lower in most samples. The sum of the six analyzed PAEs (∑6 PAEs) was lower at Sharm Obhur (587 ± 82 ng/L) and in the Red Sea shelf (677 ± 182 ng/L) compared to the Red Sea shelf break (1266 ± 354 ng/L). This suggests that degradation and adsorption of PAEs were higher in Sharm Obhur and on the shelf than on the shelf break. In contrast, there was no difference in the abundance of PDs between Sharm Obhur (0.04 ± 0.02 PDs/m3), Red Sea shelf (0.05 ± 0.02 PDs/m3) and in the Red Sea shelf break (0.03 ± 0.1 PDs/m3). Polyethylene (32%) and polypropylene (8%) were dominant, mostly smaller than 5 mm2 (78%), with the majority consisting of white (52%) and black (24%) fragments (39%), fibers (35%) and films (24%). A positive correlation between PAE concentration and abundance of PDs, suggests either a common source or a causal link through leaching. The ecological risk of ∑4PAEs (DMP, DEP, DBP and DEHP) ranged from (0.20-0.78), indicating a low to moderate risk for the Red Sea. The pollution index of PDs ranged from (0.14-0.36), showing that the Sharm Obhur and both sites of Red Sea suffered relatively low pollution.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Humanos , China , Dibutilftalato/análise , Dietilexilftalato/análise , Ésteres/análise , Oceano Índico , Ácidos Ftálicos/análise , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...