Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Exp Hematol ; : 104250, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862078

RESUMO

Genetic downregulation of the BCL11A transcription factor (TF) reverses the switch from fetal to adult hemoglobin and is effective in treating ß-hemoglobinopathies. Genetic ablation results in a gradual reduction in protein abundance and does not lend itself to the analysis of the immediate consequences of protein loss or the determination of the direct interactors/targets of the protein of interest. We achieved acute degradation of the largely disordered and 'undruggable' BCL11A protein by fusing it with a conditional degradation (degron) tag, FKBP12F36V, called degradable tags (dTAG). Small molecules then depleted the BCL11A-dTAG through endogenous proteolytic pathways. By integrating acute depletion with nascent transcriptomics and cell cycle separation techniques, we demonstrate the necessity of BCL11A occupancy at the target chromatin for sustained transcriptional repression in erythroid cells. We advocate for expanding the exploration of TF function to include acute depletion, which holds the potential to unveil unprecedented kinetic insights into TF mechanisms of action.

2.
Nat Commun ; 15(1): 1274, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341433

RESUMO

Although emerging evidence indicates that alterations in proteins within nuclear compartments elicit changes in chromosomal architecture and differentiation, the underlying mechanisms are not well understood. Here we investigate the direct role of the abundant nuclear complex protein Matrin3 (Matr3) in chromatin architecture and development in the context of myogenesis. Using an acute targeted protein degradation platform (dTAG-Matr3), we reveal the dynamics of development-related chromatin reorganization. High-throughput chromosome conformation capture (Hi-C) experiments revealed substantial chromatin loop rearrangements soon after Matr3 depletion. Notably, YY1 binding was detected, accompanied by the emergence of novel YY1-mediated enhancer-promoter loops, which occurred concurrently with changes in histone modifications and chromatin-level binding patterns. Changes in chromatin occupancy by Matr3 also correlated with these alterations. Overall, our results suggest that Matr3 mediates differentiation through stabilizing chromatin accessibility and chromatin loop-domain interactions, and highlight a conserved and direct role for Matr3 in maintenance of chromosomal architecture.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Proteínas Associadas à Matriz Nuclear , Proteínas de Ligação a RNA , Núcleo Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromossomos , Regiões Promotoras Genéticas/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
3.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293057

RESUMO

The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α 2 γ 2 ) to adult hemoglobin (HbA: α 2 ß 2 ) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a special role in DNA binding and γ-globin gene repression. Our findings help account for some rare γ-globin gene promoter mutations that perturb BCL11A binding and lead to increased HbF in adults (hereditary persistence of fetal hemoglobin). Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and ß-thalassemia.

4.
Nat Commun ; 14(1): 7978, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042929

RESUMO

PDGFRA-expressing mesenchyme supports intestinal stem cells. Stomach epithelia have related niche dependencies, but their enabling mesenchymal cell populations are unknown, in part because previous studies pooled the gastric antrum and corpus. Our high-resolution imaging, transcriptional profiling, and organoid assays identify regional subpopulations and supportive capacities of purified mouse corpus and antral PDGFRA+ cells. Sub-epithelial PDGFRAHi myofibroblasts are principal sources of BMP ligands and two molecularly distinct pools distribute asymmetrically along antral glands but together fail to support epithelial growth in vitro. In contrast, PDGFRALo CD55+ cells strategically positioned beneath gastric glands promote epithelial expansion in the absence of other cells or factors. This population encompasses a small fraction expressing the BMP antagonist Grem1. Although Grem1+ cell ablation in vivo impairs intestinal stem cells, gastric stem cells are spared, implying that CD55+ cell activity in epithelial self-renewal derives from other subpopulations. Our findings shed light on spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for epithelial support.


Assuntos
Mucosa Gástrica , Estômago , Camundongos , Animais , Células-Tronco , Intestinos , Antro Pilórico , Receptores Proteína Tirosina Quinases , Células Epiteliais
5.
BMC Genomics ; 24(1): 614, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833630

RESUMO

BACKGROUND: Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. RESULTS: To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. CONCLUSIONS: DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.


Assuntos
Cromatina , Cromossomos , Humanos , Cromatina/genética , Genoma Humano , Regulação da Expressão Gênica , Genômica
6.
Blood Adv ; 7(18): 5281-5293, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37428871

RESUMO

CRISPR/Cas9 screening approaches are powerful tool for identifying in vivo cancer dependencies. Hematopoietic malignancies are genetically complex disorders in which the sequential acquisition of somatic mutations generates clonal diversity. Over time, additional cooperating mutations may drive disease progression. Using an in vivo pooled gene editing screen of epigenetic factors in primary murine hematopoietic stem and progenitor cells (HSPCs), we sought to uncover unrecognized genes that contribute to leukemia progression. We, first, modeled myeloid leukemia in mice by functionally abrogating both Tet2 and Tet3 in HSPCs, followed by transplantation. We, then, performed pooled CRISPR/Cas9 editing of genes encoding epigenetic factors and identified Pbrm1/Baf180, a subunit of the polybromo BRG1/BRM-associated factor SWItch/Sucrose Non-Fermenting chromatin-remodeling complex, as a negative driver of disease progression. We found that Pbrm1 loss promoted leukemogenesis with a significantly shortened latency. Pbrm1-deficient leukemia cells were less immunogenic and were characterized by attenuated interferon signaling and reduced major histocompatibility complex class II (MHC II) expression. We explored the potential relevance to human leukemia by assessing the involvement of PBRM1 in the control of interferon pathway components and found that PBRM1 binds to the promoters of a subset of these genes, most notably IRF1, which in turn regulates MHC II expression. Our findings revealed a novel role for Pbrm1 in leukemia progression. More generally, CRISPR/Cas9 screening coupled with phenotypic readouts in vivo has helped identify a pathway by which transcriptional control of interferon signaling influences leukemia cell interactions with the immune system.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Ligação a DNA , Leucemia Mieloide , Fatores de Transcrição , Animais , Humanos , Camundongos , Progressão da Doença , Edição de Genes , Leucemia Mieloide/genética , Mutação , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
7.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386251

RESUMO

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Assuntos
Paralisia Facial , Animais , Camundongos , Paralisia Facial/genética , Paralisia Facial/congênito , Paralisia Facial/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neurônios Motores/metabolismo , Neurogênese , Neurônios Eferentes
8.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162846

RESUMO

Background: Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. Results: To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. Conclusions: DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.

9.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066194

RESUMO

Attenuating aberrant transcriptional circuits holds great promise for the treatment of numerous diseases, including cancer. However, development of transcriptional inhibitors is hampered by the lack of a generally accepted functional cellular readout to characterize their target specificity and on-target activity. We benchmarked the direct gene-regulatory signatures of six agents reported as inhibitors of the oncogenic transcription factor MYB against targeted MYB degradation in a nascent transcriptomics assay. The inhibitors demonstrated partial specificity for MYB target genes but displayed significant off-target activity. Unexpectedly, the inhibitors displayed bimodal on-target effects, acting as mixed agonists-antagonists. Our data uncover unforeseen agonist effects of small molecules originally developed as TF inhibitors and argue that rapid-kinetics benchmarking against degron models should be used for functional characterization of transcriptional modulators.

10.
Hematol Oncol Clin North Am ; 37(2): 301-312, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907604

RESUMO

ß-thalassemia is caused by mutations that reduce ß-globin production, causing globin chain imbalance, ineffective erythropoiesis, and consequent anemia. Increased fetal hemoglobin (HbF) levels can ameliorate the severity of ß-thalassemia by compensating for the globin chain imbalance. Careful clinical observations paired with population studies and advances in human genetics have enabled the discovery of major regulators of HbF switching (i.e. BCL11A, ZBTB7A) and led to pharmacological and genetic therapies for treating ß-thalassemia patients. Recent functional screens using genome editing and other emerging tools have identified many new HbF regulators, which may improve therapeutic HbF induction in the future.


Assuntos
Hemoglobina Fetal , Talassemia beta , Humanos , Hemoglobina Fetal/genética , Talassemia beta/genética , Proteínas de Ligação a DNA , Linhagem Celular Tumoral , Fatores de Transcrição
11.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993171

RESUMO

Lineage-defining transcription factors form densely interconnected circuits in chromatin occupancy assays, but the functional significance of these networks remains underexplored. We reconstructed the functional topology of a leukemia cell transcription network from the direct gene-regulatory programs of eight core transcriptional regulators established in pre-steady state assays coupling targeted protein degradation with nascent transcriptomics. The core regulators displayed narrow, largely non-overlapping direct transcriptional programs, forming a sparsely interconnected functional hierarchy stabilized by incoherent feed-forward loops. BET bromodomain and CDK7 inhibitors disrupted the core regulators' direct programs, acting as mixed agonists/antagonists. The network is predictive of dynamic gene expression behaviors in time-resolved assays and clinically relevant pathway activity in patient populations.

12.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36798304

RESUMO

PDGFRA-expressing mesenchyme provides a niche for intestinal stem cells. Corresponding compartments are unknown in the stomach, where corpus and antral glandular epithelia have similar niche dependencies but are structurally distinct from the intestine and from each other. Previous studies considered antrum and corpus as a whole and did not assess niche functions. Using high-resolution imaging and sequencing, we identify regional subpopulations and niche properties of purified mouse corpus and antral PDGFRA + cells. PDGFRA Hi sub-epithelial myofibroblasts are principal sources of BMP ligands in both gastric segments; two molecularly distinct groups distribute asymmetrically along antral glands but together fail to support epithelial organoids in vitro . In contrast, strategically positioned PDGFRA Lo cells that express CD55 enable corpus and antral organoid growth in the absence of other cellular or soluble factors. Our study provides detailed insights into spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for stem cell support.

13.
Methods Enzymol ; 681: 1-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36764753

RESUMO

The dTAG system is a versatile strategy for tunable control of protein abundance and facilitates the time-resolved assessment of disease-associated protein function. A "co-opted" fusion-based degron peptide, the "dTAG" facilitates the study of endogenous protein function when knocked-in at the endogenous genetic loci of proteins of interest. We combine CRISPR/Cas9 mediated induction of double-strand breaks (DSB) with the delivery of a single-stranded DNA HDR-donor-template via crude preparations of recombinant adeno-associated virus (rAAV). Our approach to knock-in of large (1-2kb) DNA fragments via crude-rAAV mediated HDR donor delivery is rapid and inexpensive. It facilitates genetic modification of a variety of human as well as mouse cell lines at high efficiency and precision.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Humanos , DNA , DNA de Cadeia Simples , Reparo de DNA por Recombinação
14.
Proc Natl Acad Sci U S A ; 120(3): e2218959120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626555

RESUMO

Transcription factors (TFs) control numerous genes that are directly relevant to many human disorders. However, developing specific reagents targeting TFs within intact cells is challenging due to the presence of highly disordered regions within these proteins. Intracellular antibodies offer opportunities to probe protein function and validate therapeutic targets. Here, we describe the optimization of nanobodies specific for BCL11A, a validated target for the treatment of hemoglobin disorders. We obtained first-generation nanobodies directed to a region of BCL11A comprising zinc fingers 4 to 6 (ZF456) from a synthetic yeast surface display library, and employed error-prone mutagenesis, structural determination, and molecular modeling to enhance binding affinity. Engineered nanobodies recognized ZF6 and mediated targeted protein degradation (TPD) of BCL11A protein in erythroid cells, leading to the anticipated reactivation of fetal hemoglobin (HbF) expression. Evolved nanobodies distinguished BCL11A from its close paralog BCL11B, which shares an identical DNA-binding specificity. Given the ease of manipulation of nanobodies and their exquisite specificity, nanobody-mediated TPD of TFs should be suitable for dissecting regulatory relationships of TFs and gene targets and validating therapeutic potential of proteins of interest.


Assuntos
Anticorpos de Domínio Único , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hemoglobina Fetal/metabolismo
15.
Nat Commun ; 14(1): 336, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670102

RESUMO

Inhibitors of the Polycomb Repressive Complex 2 (PRC2) histone methyltransferase EZH2 are approved for certain cancers, but realizing their wider utility relies upon understanding PRC2 biology in each cancer system. Using a genetic model to delete Ezh2 in KRAS-driven lung adenocarcinomas, we observed that Ezh2 haplo-insufficient tumors were less lethal and lower grade than Ezh2 fully-insufficient tumors, which were poorly differentiated and metastatic. Using three-dimensional cultures and in vivo experiments, we determined that EZH2-deficient tumors were vulnerable to H3K27 demethylase or BET inhibitors. PRC2 loss/inhibition led to de-repression of FOXP2, a transcription factor that promotes migration and stemness, and FOXP2 could be suppressed by BET inhibition. Poorly differentiated human lung cancers were enriched for an H3K27me3-low state, representing a subtype that may benefit from BET inhibition as a single therapy or combined with additional EZH2 inhibition. These data highlight diverse roles of PRC2 in KRAS-driven lung adenocarcinomas, and demonstrate the utility of three-dimensional cultures for exploring epigenetic drug sensitivities for cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Neoplasias/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética
16.
Cell Chem Biol ; 29(8): 1273-1287.e8, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35839780

RESUMO

Reactivation of fetal hemoglobin expression by the downregulation of BCL11A is a promising treatment for ß-hemoglobinopathies. A detailed understanding of BCL11A-mediated repression of γ-globin gene (HBG1/2) transcription is lacking, as studies to date used perturbations by shRNA or CRISPR-Cas9 gene editing. We leveraged the dTAG PROTAC degradation platform to acutely deplete BCL11A protein in erythroid cells and examined consequences by nascent transcriptomics, proteomics, chromatin accessibility, and histone profiling. Among 31 genes repressed by BCL11A, HBG1/2 and HBZ show the most abundant and progressive changes in transcription and chromatin accessibility upon BCL11A loss. Transcriptional changes at HBG1/2 were detected in <2 h. Robust HBG1/2 reactivation upon acute BCL11A depletion occurred without the loss of promoter 5-methylcytosine (5mC). Using targeted protein degradation, we establish a hierarchy of gene reactivation at BCL11A targets, in which nascent transcription is followed by increased chromatin accessibility, and both are uncoupled from promoter DNA methylation at the HBG1/2 loci.


Assuntos
Proteínas Nucleares , Proteoma , Proteínas de Transporte/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células Eritroides/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
17.
Blood Cancer Discov ; 3(5): 394-409, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709529

RESUMO

Relapse of acute myeloid leukemia (AML) after allogeneic bone marrow transplantation has been linked to immune evasion due to reduced expression of major histocompatibility complex class II (MHCII) genes through unknown mechanisms. In this work, we developed CORENODE, a computational algorithm for genome-wide transcription network decomposition that identified a transcription factor (TF) tetrad consisting of IRF8, MYB, MEF2C, and MEIS1, regulating MHCII expression in AML cells. We show that reduced MHCII expression at relapse is transcriptionally driven by combinatorial changes in the expression of these TFs, where MYB and IRF8 play major opposing roles, acting independently of the IFNγ/CIITA pathway. Beyond the MHCII genes, MYB and IRF8 antagonistically regulate a broad genetic program responsible for cytokine signaling and T-cell stimulation that displays reduced expression at relapse. A small number of cells with altered TF abundance and silenced MHCII expression are present at the time of initial leukemia diagnosis, likely contributing to eventual relapse. SIGNIFICANCE: Our findings point to an adaptive transcriptional mechanism of AML evolution after allogeneic transplantation whereby combinatorial fluctuations of TF expression under immune pressure result in the selection of cells with a silenced T-cell stimulation program. This article is highlighted in the In This Issue feature, p. 369.


Assuntos
Leucemia Mieloide Aguda , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Fatores Reguladores de Interferon , Leucemia Mieloide Aguda/genética , Recidiva , Transplante Homólogo
18.
Stem Cell Reports ; 17(7): 1546-1560, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35714596

RESUMO

Hematopoiesis is maintained by functionally diverse lineage-biased hematopoietic stem cells (HSCs). The functional significance of HSC heterogeneity and the regulatory mechanisms underlying lineage bias are not well understood. However, absolute purification of HSC subtypes with a pre-determined behavior remains challenging, highlighting the importance of continued efforts toward prospective isolation of homogeneous HSC subsets. In this study, we demonstrate that CD49b subdivides the most primitive HSC compartment into functionally distinct subtypes: CD49b- HSCs are highly enriched for myeloid-biased and the most durable cells, while CD49b+ HSCs are enriched for multipotent cells with lymphoid bias and reduced self-renewal ability. We further demonstrate considerable transcriptional similarities between CD49b- and CD49b+ HSCs but distinct differences in chromatin accessibility. Our studies highlight the diversity of HSC functional behaviors and provide insights into the molecular regulation of HSC heterogeneity through transcriptional and epigenetic mechanisms.


Assuntos
Células-Tronco Hematopoéticas , Integrina alfa2 , Diferenciação Celular/genética , Linhagem da Célula/genética , Hematopoese/genética , Células-Tronco Multipotentes
19.
Cell Rep ; 39(4): 110752, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476984

RESUMO

High-risk forms of B-acute lymphoblastic leukemia (B-ALL) remain a therapeutic challenge. Leukemia-initiating cells (LICs) self-renew and spark relapse and therefore have been the subject of intensive investigation; however, the properties of LICs in high-risk B-ALL are not well understood. Here, we use single-cell transcriptomics and quantitative xenotransplantation to understand LICs in MLL-rearranged (MLL-r) B-ALL. Compared with reported LIC frequencies in acute myeloid leukemia (AML), engraftable LICs in MLL-r B-ALL are abundant. Although we find that multipotent, self-renewing LICs are enriched among phenotypically undifferentiated B-ALL cells, LICs with the capacity to replenish the leukemic cellular diversity can emerge from more mature fractions. While inhibiting oxidative phosphorylation blunts blast proliferation, this intervention promotes LIC emergence. Conversely, inhibiting hypoxia and glycolysis impairs MLL-r B-ALL LICs, providing a therapeutic benefit in xenotransplantation systems. These findings provide insight into the aggressive nature of MLL-r B-ALL and provide a rationale for therapeutic targeting of hypoxia and glycolysis.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Glicólise , Humanos , Hipóxia , Leucemia Mieloide Aguda/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
20.
Cell Rep ; 39(1): 110587, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385744

RESUMO

Hematopoiesis changes over life to meet the demands of maturation and aging. Here, we find that the definitive hematopoietic stem and progenitor cell (HSPC) compartment is remodeled from gestation into adulthood, a process regulated by the heterochronic Lin28b/let-7 axis. Native fetal and neonatal HSPCs distribute with a pro-lymphoid/erythroid bias with a shift toward myeloid output in adulthood. By mining transcriptomic data comparing juvenile and adult HSPCs and reconstructing coordinately activated gene regulatory networks, we uncover the Polycomb repressor complex 1 (PRC1) component Cbx2 as an effector of Lin28b/let-7's control of hematopoietic maturation. We find that juvenile Cbx2-/- hematopoietic tissues show impairment of B-lymphopoiesis, a precocious adult-like myeloid bias, and that Cbx2/PRC1 regulates developmental timing of expression of key hematopoietic transcription factors. These findings define a mechanism of regulation of HSPC output via chromatin modification as a function of age with potential impact on age-biased pediatric and adult blood disorders.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , MicroRNAs , Complexo Repressor Polycomb 1 , Proteínas de Ligação a RNA , Adulto , Animais , Criança , Redes Reguladoras de Genes , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Recém-Nascido , Linfopoese , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...